updated with fixed tokenizer config
Badger/δ Llama 3 Instruct 32k
I haven't been releasing my base merges so far, but this one seems worthy.
Badger is a recursive maximally disjoint pairwise normalized fourier interpolation of the following models:
models = [
'Einstein-v6.1-Llama3-8B',
'L3-TheSpice-8b-v0.8.3',
'dolphin-2.9-llama3-8b',
'Configurable-Hermes-2-Pro-Llama-3-8B',
'MAmmoTH2-8B-Plus',
'Pantheon-RP-1.0-8b-Llama-3',
'Tiamat-8b-1.2-Llama-3-DPO',
'Buzz-8b-Large-v0.5',
'Kei_Llama3_8B',
'Llama-3-Lumimaid-8B-v0.1',
'llama-3-cat-8b-instruct-pytorch',
'Llama-3SOME-8B-v1',
'Roleplay-Llama-3-8B',
'Llama-3-LewdPlay-8B-evo',
'opus-v1.2-llama-3-8b-instruct-run3.5-epoch2.5',
'meta-llama-3-8b-instruct-hf-ortho-baukit-5fail-3000total-bf16',
'Poppy_Porpoise-0.72-L3-8B',
'Llama-3-8B-Instruct-norefusal',
'Meta-Llama-3-8B-Instruct-DPO',
'badger',
'Llama-3-Refueled',
'Llama-3-8B-Instruct-DPO-v0.4',
'Llama-3-8B-Instruct-Gradient-1048k',
'Mahou-1.0-llama3-8B',
'Llama-3-SauerkrautLM-8b-Instruct',
'Llama-3-Soliloquy-8B-v2'
]
I have included the notebook code I used to generate the model, for any that are curious. I have adjusted the config for rope scale 4, and 16k-32k context both seem coherent.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 69.49 |
AI2 Reasoning Challenge (25-Shot) | 63.65 |
HellaSwag (10-Shot) | 81.40 |
MMLU (5-Shot) | 67.13 |
TruthfulQA (0-shot) | 55.02 |
Winogrande (5-shot) | 77.35 |
GSM8k (5-shot) | 72.40 |
- Downloads last month
- 22
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for maldv/badger-l3-instruct-32k
Spaces using maldv/badger-l3-instruct-32k 5
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard63.650
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard81.400
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard67.130
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard55.020
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard77.350
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard72.400