|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: mallikrao2/qa-finetuned-swag |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# mallikrao2/qa-finetuned-swag |
|
|
|
This model is a fine-tuned version of [mallikrao2/sQuad_bertmodel1_](https://huggingface.co/mallikrao2/sQuad_bertmodel1_) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0020 |
|
- Train Accuracy: 0.9994 |
|
- Validation Loss: 1.9750 |
|
- Validation Accuracy: 0.7508 |
|
- Epoch: 19 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 66860, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |
|
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:| |
|
| 0.8405 | 0.6630 | 0.6156 | 0.7596 | 0 | |
|
| 0.4697 | 0.8233 | 0.6102 | 0.7643 | 1 | |
|
| 0.2479 | 0.9087 | 0.7102 | 0.7573 | 2 | |
|
| 0.1571 | 0.9439 | 0.8434 | 0.7482 | 3 | |
|
| 0.1139 | 0.9599 | 1.0923 | 0.7453 | 4 | |
|
| 0.0881 | 0.9698 | 1.0614 | 0.7421 | 5 | |
|
| 0.0705 | 0.9758 | 1.1311 | 0.7412 | 6 | |
|
| 0.0577 | 0.9802 | 1.1761 | 0.7387 | 7 | |
|
| 0.0453 | 0.9845 | 1.3310 | 0.7446 | 8 | |
|
| 0.0379 | 0.9869 | 1.3076 | 0.7361 | 9 | |
|
| 0.0301 | 0.9898 | 1.3147 | 0.7434 | 10 | |
|
| 0.0228 | 0.9923 | 1.6641 | 0.7388 | 11 | |
|
| 0.0195 | 0.9932 | 1.6168 | 0.7397 | 12 | |
|
| 0.0165 | 0.9948 | 1.6042 | 0.7458 | 13 | |
|
| 0.0118 | 0.9960 | 1.6922 | 0.7426 | 14 | |
|
| 0.0098 | 0.9970 | 1.7052 | 0.7449 | 15 | |
|
| 0.0059 | 0.9982 | 1.8137 | 0.7453 | 16 | |
|
| 0.0040 | 0.9986 | 1.9369 | 0.7504 | 17 | |
|
| 0.0032 | 0.9991 | 1.9089 | 0.7498 | 18 | |
|
| 0.0020 | 0.9994 | 1.9750 | 0.7508 | 19 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.29.2 |
|
- TensorFlow 2.8.0 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|