Edit model card

Model trained on Hindi and English data.

This model also includes dataset https://huggingface.co/datasets/sarvamai/samvaad-hi-v1

Check latest evals at https://github.com/manishiitg/IndicEval

Try it out: https://colab.research.google.com/drive/1A_hbsq1vrCeAh3dEMvtwxxNxcNZ1BUyW?usp=sharing

For sample responose on different prompts checkout: https://github.com/manishiitg/hi-llm-eval

Language Hi

Model xlsum-hi truthfulqa-hi indic-arc-easy mmlu_hi indicqa flores indicheadline indicxparaphrase hellaswag-indic indicwikibio boolq-hi implicit_hate indic-arc-challenge indicsentiment
open-aditi-hi-v2 0.4213 0.6934 0.4979 0.3253 0.0795 43.6822 0.4565 0.6838 0.2404 0.4846 0.8541 11.5021 0.4462 0.9729
open-aditi-hi-v3 0.4490 0.5369 0.5480 0.1351 0.0058 48.2859 0.4682 0.8846 0.4891 0.5034 0.5401 8.8315 0.4633 0.9519
open-aditi-hi-v4 0.4046 0.7671 0.4529 0.2124 0.0026 47.8500 0.1980 0.7737 0.3595 0.4894 0.7015 5.9709 0.3857 0.9699
OpenHermes-2.5-Mistral-7B 0.1774 0.3234 0.3523 0.2769 0.2721 30.3465 0.1996 0.8766 0.2485 0.3332 0.5979 0.2068 0.3396 0.9048
OpenHermes-2.5-Mistral-7B-AWQ 0.1894 0.3428 0.3291 0.2750 0.3116 29.3681 0.2062 0.8536 0.2479 0.3067 0.5272 6.0594 0.3157 0.9218
open-aditi-hi-v1 0.4212 0.4230 0.3889 0.1398 0.1306 40.2376 0.4248 0.5939 0.0848 0.4104 0.3758 8.6105 0.3558 0.8798
Airavata 0.4650 0.0466 0.1128 0.1336 0.0155 58.5260 0.4346 0.6419 0.0550 0.0637 0.0128 6.3612 0.0836 0.0992

Language En

Model boolq truthfulqa arc-easy-exact mmlu hellaswag xlsum arc-challenge
open-aditi-hi-v4 0.3905 0.3378 0.8460 0.5725 0.7603 0.4384 0.7491
OpenHermes-2.5-Mistral-7B 0.4061 0.2081 0.8687 0.5991 0.7999 0.4328 0.7790
OpenHermes-2.5-Mistral-7B-AWQ 0.4199 0.1897 0.8569 0.5816 0.7826 0.4317 0.7611
open-aditi-hi-v3 0.3749 0.3097 0.8384 0.5478 0.7645 0.4352 0.7415
open-aditi-hi-v2 0.3982 0.2999 0.8388 0.5544 0.4738 0.4349 0.7235
open-aditi-hi-v1 0.0434 0.3317 0.7588 0.2597 0.3509 0.4288 0.6271
Airavata 0.5086 0.3574 0.6772 0.1165 0.1799 0.4393 0.1630

Task: flores Metric: chrf

Task: implicit_hate Metric: chrf

Task: indicsentiment Metric: accuracy

Task: indicxparaphrase Metric: accuracy

Task: boolq-hi Metric: accuracy

Task: truthfulqa-hi Metric: accuracy

Task: indic-arc-easy Metric: accuracy

Task: indicwikibio Metric: bleurt

Task: hellaswag-indic Metric: accuracy

Task: indicheadline Metric: bleurt

Task: xlsum-hi Metric: bleurt

Task: indic-arc-challenge Metric: accuracy

Task: mmlu_hi Metric: average_acc

Task: indicqa Metric: accuracy

Task: arc-easy-exact Metric: accuracy

Task: hellaswag Metric: accuracy

Task: arc-challenge Metric: accuracy

Task: mmlu Metric: average_acc

Task: boolq Metric: accuracy

Task: xlsum Metric: bleurt

Task: truthfulqa Metric: accuracy

Model evaluation on OpenLLM LeaderBoard

image/png

image/png

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 64.23
AI2 Reasoning Challenge (25-Shot) 60.15
HellaSwag (10-Shot) 81.84
MMLU (5-Shot) 61.32
TruthfulQA (0-shot) 44.89
Winogrande (5-shot) 79.95
GSM8k (5-shot) 57.24

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 64.23
AI2 Reasoning Challenge (25-Shot) 60.15
HellaSwag (10-Shot) 81.84
MMLU (5-Shot) 61.32
TruthfulQA (0-shot) 44.89
Winogrande (5-shot) 79.95
GSM8k (5-shot) 57.24
Downloads last month
8
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including manishiitg/open-aditi-hi-v4

Evaluation results