Edit model card

Model Trained Using AutoTrain

This model was trained using AutoTrain. For more information, please visit AutoTrain.

Usage


from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
import torch
access_token = "<HF_TOKEN>"


tokenizer = AutoTokenizer.from_pretrained(
        "meta-llama/Llama-2-7b-chat-hf"
    )


base_model =  AutoModelForCausalLM.from_pretrained(
    'meta-llama/Llama-2-7b-chat-hf',
    token=access_token,
    trust_remote_code=True,
    #device_map="auto",    #Uncomment if you hava a good GPU Memory
    torch_dtype=torch.float16,
    offload_folder="offload/"
)
model = PeftModel.from_pretrained(
    base_model,
    'manjunathshiva/GRADE3B-7B-02-0',
    token=access_token,
    offload_folder="offload/"
    
).eval()

# Prompt content: "When is Maths Unit Test 2?"
messages = [
    {"role": "user", "content": "When is Maths Unit Test 2?"}
]

input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
#output_ids = model.generate(input_ids.to('cuda'))  #Uncomment if you have CUDA and comment below line
output_ids = model.generate(input_ids=input_ids, temperature=0.01 )
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)

# Model response: "<Outputs Date>"
print(response)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .