metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Thank you for your email. Please go ahead and issue. Please invoice in KES
- text: >-
Hi, We are missing some invoices, can you please provide it. 02 - 12 -
2020 AGENT FEE 8900784339018 $21.00 02 - 19 - 2020 AGENT FEE 0017417554160
$22.00 02 - 19 - 2020 AGENT FEE 0017417554143 $22.00 02 - 19 - 2020 AGENT
FEE 8900783383420 $21.00
- text: >-
We need your assistance with the payment for the recent office supplies
order. Let us know once it's done.
- text: >-
I have reported this in November and not only was the trip supposed to be
cancelled and credited I was double billed and the billing has not been
corrected. The total credit should be $667.20. Please confirm this will be
done.
- text: >-
The invoice for the travel arrangements needs to be settled. Kindly
provide payment confirmation.
inference: true
SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-MiniLM-L6-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/all-MiniLM-L6-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 256 tokens
- Number of Classes: 14 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mann2107/BCMPIIRAB_MiniLM_ALLNewV2")
# Run inference
preds = model("Thank you for your email. Please go ahead and issue. Please invoice in KES")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 25.6577 | 136 |
Label | Training Sample Count |
---|---|
0 | 24 |
1 | 24 |
2 | 24 |
3 | 24 |
4 | 24 |
5 | 24 |
6 | 24 |
7 | 24 |
8 | 24 |
9 | 24 |
10 | 24 |
11 | 24 |
12 | 24 |
13 | 24 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 68
- body_learning_rate: (1.44030579311381e-05, 1.44030579311381e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- max_length: 512
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.2917 | - |
0.0088 | 50 | 0.2434 | - |
0.0175 | 100 | 0.2053 | - |
0.0263 | 150 | 0.1789 | - |
0.0350 | 200 | 0.2249 | - |
0.0438 | 250 | 0.1773 | - |
0.0525 | 300 | 0.1648 | - |
0.0613 | 350 | 0.2617 | - |
0.0700 | 400 | 0.1342 | - |
0.0788 | 450 | 0.1064 | - |
0.0875 | 500 | 0.1273 | - |
0.0963 | 550 | 0.1248 | - |
0.1050 | 600 | 0.2013 | - |
0.1138 | 650 | 0.1979 | - |
0.1225 | 700 | 0.1631 | - |
0.1313 | 750 | 0.1079 | - |
0.1401 | 800 | 0.0858 | - |
0.1488 | 850 | 0.0999 | - |
0.1576 | 900 | 0.0638 | - |
0.1663 | 950 | 0.1287 | - |
0.1751 | 1000 | 0.1408 | - |
0.1838 | 1050 | 0.1902 | - |
0.1926 | 1100 | 0.0648 | - |
0.2013 | 1150 | 0.1383 | - |
0.2101 | 1200 | 0.0609 | - |
0.2188 | 1250 | 0.0865 | - |
0.2276 | 1300 | 0.1069 | - |
0.2363 | 1350 | 0.051 | - |
0.2451 | 1400 | 0.0692 | - |
0.2539 | 1450 | 0.123 | - |
0.2626 | 1500 | 0.0758 | - |
0.2714 | 1550 | 0.0835 | - |
0.2801 | 1600 | 0.0523 | - |
0.2889 | 1650 | 0.0946 | - |
0.2976 | 1700 | 0.0445 | - |
0.3064 | 1750 | 0.0248 | - |
0.3151 | 1800 | 0.0373 | - |
0.3239 | 1850 | 0.0248 | - |
0.3326 | 1900 | 0.0446 | - |
0.3414 | 1950 | 0.0142 | - |
0.3501 | 2000 | 0.023 | - |
0.3589 | 2050 | 0.0119 | - |
0.3676 | 2100 | 0.0383 | - |
0.3764 | 2150 | 0.0188 | - |
0.3852 | 2200 | 0.0204 | - |
0.3939 | 2250 | 0.0109 | - |
0.4027 | 2300 | 0.0273 | - |
0.4114 | 2350 | 0.0216 | - |
0.4202 | 2400 | 0.0073 | - |
0.4289 | 2450 | 0.0338 | - |
0.4377 | 2500 | 0.0047 | - |
0.4464 | 2550 | 0.0096 | - |
0.4552 | 2600 | 0.0069 | - |
0.4639 | 2650 | 0.0078 | - |
0.4727 | 2700 | 0.0122 | - |
0.4814 | 2750 | 0.0578 | - |
0.4902 | 2800 | 0.0074 | - |
0.4989 | 2850 | 0.0103 | - |
0.5077 | 2900 | 0.0092 | - |
0.5165 | 2950 | 0.004 | - |
0.5252 | 3000 | 0.0061 | - |
0.5340 | 3050 | 0.0214 | - |
0.5427 | 3100 | 0.0048 | - |
0.5515 | 3150 | 0.0036 | - |
0.5602 | 3200 | 0.0041 | - |
0.5690 | 3250 | 0.0151 | - |
0.5777 | 3300 | 0.0042 | - |
0.5865 | 3350 | 0.0029 | - |
0.5952 | 3400 | 0.0021 | - |
0.6040 | 3450 | 0.0018 | - |
0.6127 | 3500 | 0.0058 | - |
0.6215 | 3550 | 0.0011 | - |
0.6303 | 3600 | 0.0078 | - |
0.6390 | 3650 | 0.0011 | - |
0.6478 | 3700 | 0.0017 | - |
0.6565 | 3750 | 0.0022 | - |
0.6653 | 3800 | 0.0016 | - |
0.6740 | 3850 | 0.002 | - |
0.6828 | 3900 | 0.0023 | - |
0.6915 | 3950 | 0.0011 | - |
0.7003 | 4000 | 0.0012 | - |
0.7090 | 4050 | 0.0007 | - |
0.7178 | 4100 | 0.0021 | - |
0.7265 | 4150 | 0.0019 | - |
0.7353 | 4200 | 0.002 | - |
0.7440 | 4250 | 0.0018 | - |
0.7528 | 4300 | 0.0029 | - |
0.7616 | 4350 | 0.0015 | - |
0.7703 | 4400 | 0.0022 | - |
0.7791 | 4450 | 0.0012 | - |
0.7878 | 4500 | 0.0007 | - |
0.7966 | 4550 | 0.0015 | - |
0.8053 | 4600 | 0.0011 | - |
0.8141 | 4650 | 0.0016 | - |
0.8228 | 4700 | 0.0009 | - |
0.8316 | 4750 | 0.0007 | - |
0.8403 | 4800 | 0.0011 | - |
0.8491 | 4850 | 0.001 | - |
0.8578 | 4900 | 0.0008 | - |
0.8666 | 4950 | 0.0014 | - |
0.8754 | 5000 | 0.0022 | - |
0.8841 | 5050 | 0.0012 | - |
0.8929 | 5100 | 0.0007 | - |
0.9016 | 5150 | 0.0014 | - |
0.9104 | 5200 | 0.0007 | - |
0.9191 | 5250 | 0.0012 | - |
0.9279 | 5300 | 0.0011 | - |
0.9366 | 5350 | 0.0012 | - |
0.9454 | 5400 | 0.0029 | - |
0.9541 | 5450 | 0.001 | - |
0.9629 | 5500 | 0.0011 | - |
0.9716 | 5550 | 0.0004 | - |
0.9804 | 5600 | 0.0009 | - |
0.9891 | 5650 | 0.0004 | - |
0.9979 | 5700 | 0.003 | - |
1.0 | 5712 | - | 0.0459 |
1.0067 | 5750 | 0.0014 | - |
1.0154 | 5800 | 0.0008 | - |
1.0242 | 5850 | 0.0009 | - |
1.0329 | 5900 | 0.0007 | - |
1.0417 | 5950 | 0.0007 | - |
1.0504 | 6000 | 0.0006 | - |
1.0592 | 6050 | 0.0008 | - |
1.0679 | 6100 | 0.0006 | - |
1.0767 | 6150 | 0.0006 | - |
1.0854 | 6200 | 0.0007 | - |
1.0942 | 6250 | 0.0025 | - |
1.1029 | 6300 | 0.0006 | - |
1.1117 | 6350 | 0.0009 | - |
1.1204 | 6400 | 0.0009 | - |
1.1292 | 6450 | 0.0009 | - |
1.1380 | 6500 | 0.0006 | - |
1.1467 | 6550 | 0.0004 | - |
1.1555 | 6600 | 0.0014 | - |
1.1642 | 6650 | 0.0029 | - |
1.1730 | 6700 | 0.0004 | - |
1.1817 | 6750 | 0.0027 | - |
1.1905 | 6800 | 0.0003 | - |
1.1992 | 6850 | 0.0003 | - |
1.2080 | 6900 | 0.0006 | - |
1.2167 | 6950 | 0.0015 | - |
1.2255 | 7000 | 0.0005 | - |
1.2342 | 7050 | 0.0005 | - |
1.2430 | 7100 | 0.0016 | - |
1.2518 | 7150 | 0.0005 | - |
1.2605 | 7200 | 0.0003 | - |
1.2693 | 7250 | 0.0006 | - |
1.2780 | 7300 | 0.0007 | - |
1.2868 | 7350 | 0.0004 | - |
1.2955 | 7400 | 0.0007 | - |
1.3043 | 7450 | 0.0007 | - |
1.3130 | 7500 | 0.0007 | - |
1.3218 | 7550 | 0.0003 | - |
1.3305 | 7600 | 0.0002 | - |
1.3393 | 7650 | 0.0002 | - |
1.3480 | 7700 | 0.0005 | - |
1.3568 | 7750 | 0.0014 | - |
1.3655 | 7800 | 0.0012 | - |
1.3743 | 7850 | 0.0002 | - |
1.3831 | 7900 | 0.0002 | - |
1.3918 | 7950 | 0.0003 | - |
1.4006 | 8000 | 0.0005 | - |
1.4093 | 8050 | 0.0006 | - |
1.4181 | 8100 | 0.0003 | - |
1.4268 | 8150 | 0.0009 | - |
1.4356 | 8200 | 0.0004 | - |
1.4443 | 8250 | 0.0002 | - |
1.4531 | 8300 | 0.0004 | - |
1.4618 | 8350 | 0.0008 | - |
1.4706 | 8400 | 0.0002 | - |
1.4793 | 8450 | 0.0004 | - |
1.4881 | 8500 | 0.0006 | - |
1.4968 | 8550 | 0.0011 | - |
1.5056 | 8600 | 0.0003 | - |
1.5144 | 8650 | 0.0003 | - |
1.5231 | 8700 | 0.0004 | - |
1.5319 | 8750 | 0.0004 | - |
1.5406 | 8800 | 0.0002 | - |
1.5494 | 8850 | 0.0007 | - |
1.5581 | 8900 | 0.0003 | - |
1.5669 | 8950 | 0.0002 | - |
1.5756 | 9000 | 0.0007 | - |
1.5844 | 9050 | 0.0005 | - |
1.5931 | 9100 | 0.0005 | - |
1.6019 | 9150 | 0.0011 | - |
1.6106 | 9200 | 0.0004 | - |
1.6194 | 9250 | 0.0004 | - |
1.6282 | 9300 | 0.0003 | - |
1.6369 | 9350 | 0.0002 | - |
1.6457 | 9400 | 0.0003 | - |
1.6544 | 9450 | 0.0006 | - |
1.6632 | 9500 | 0.0004 | - |
1.6719 | 9550 | 0.0004 | - |
1.6807 | 9600 | 0.0006 | - |
1.6894 | 9650 | 0.0001 | - |
1.6982 | 9700 | 0.0002 | - |
1.7069 | 9750 | 0.0004 | - |
1.7157 | 9800 | 0.0004 | - |
1.7244 | 9850 | 0.0001 | - |
1.7332 | 9900 | 0.0004 | - |
1.7419 | 9950 | 0.0004 | - |
1.7507 | 10000 | 0.0006 | - |
1.7595 | 10050 | 0.0003 | - |
1.7682 | 10100 | 0.0002 | - |
1.7770 | 10150 | 0.0004 | - |
1.7857 | 10200 | 0.0004 | - |
1.7945 | 10250 | 0.0002 | - |
1.8032 | 10300 | 0.0008 | - |
1.8120 | 10350 | 0.0004 | - |
1.8207 | 10400 | 0.0005 | - |
1.8295 | 10450 | 0.0004 | - |
1.8382 | 10500 | 0.0001 | - |
1.8470 | 10550 | 0.0003 | - |
1.8557 | 10600 | 0.0003 | - |
1.8645 | 10650 | 0.0005 | - |
1.8732 | 10700 | 0.0005 | - |
1.8820 | 10750 | 0.0003 | - |
1.8908 | 10800 | 0.0001 | - |
1.8995 | 10850 | 0.0002 | - |
1.9083 | 10900 | 0.0001 | - |
1.9170 | 10950 | 0.0003 | - |
1.9258 | 11000 | 0.0005 | - |
1.9345 | 11050 | 0.0003 | - |
1.9433 | 11100 | 0.0004 | - |
1.9520 | 11150 | 0.0007 | - |
1.9608 | 11200 | 0.0002 | - |
1.9695 | 11250 | 0.0003 | - |
1.9783 | 11300 | 0.0001 | - |
1.9870 | 11350 | 0.0001 | - |
1.9958 | 11400 | 0.0002 | - |
2.0 | 11424 | - | 0.042 |
2.0046 | 11450 | 0.0003 | - |
2.0133 | 11500 | 0.0002 | - |
2.0221 | 11550 | 0.0002 | - |
2.0308 | 11600 | 0.0002 | - |
2.0396 | 11650 | 0.0003 | - |
2.0483 | 11700 | 0.0003 | - |
2.0571 | 11750 | 0.0002 | - |
2.0658 | 11800 | 0.0002 | - |
2.0746 | 11850 | 0.0002 | - |
2.0833 | 11900 | 0.0002 | - |
2.0921 | 11950 | 0.0001 | - |
2.1008 | 12000 | 0.0003 | - |
2.1096 | 12050 | 0.0005 | - |
2.1183 | 12100 | 0.0002 | - |
2.1271 | 12150 | 0.0003 | - |
2.1359 | 12200 | 0.0002 | - |
2.1446 | 12250 | 0.0003 | - |
2.1534 | 12300 | 0.0003 | - |
2.1621 | 12350 | 0.0001 | - |
2.1709 | 12400 | 0.0002 | - |
2.1796 | 12450 | 0.0002 | - |
2.1884 | 12500 | 0.0002 | - |
2.1971 | 12550 | 0.0002 | - |
2.2059 | 12600 | 0.0001 | - |
2.2146 | 12650 | 0.0002 | - |
2.2234 | 12700 | 0.0003 | - |
2.2321 | 12750 | 0.0003 | - |
2.2409 | 12800 | 0.0004 | - |
2.2496 | 12850 | 0.0002 | - |
2.2584 | 12900 | 0.0002 | - |
2.2672 | 12950 | 0.0003 | - |
2.2759 | 13000 | 0.0002 | - |
2.2847 | 13050 | 0.0002 | - |
2.2934 | 13100 | 0.0002 | - |
2.3022 | 13150 | 0.0001 | - |
2.3109 | 13200 | 0.0002 | - |
2.3197 | 13250 | 0.0001 | - |
2.3284 | 13300 | 0.0002 | - |
2.3372 | 13350 | 0.0003 | - |
2.3459 | 13400 | 0.0002 | - |
2.3547 | 13450 | 0.0001 | - |
2.3634 | 13500 | 0.0002 | - |
2.3722 | 13550 | 0.0001 | - |
2.3810 | 13600 | 0.0006 | - |
2.3897 | 13650 | 0.0001 | - |
2.3985 | 13700 | 0.0002 | - |
2.4072 | 13750 | 0.0002 | - |
2.4160 | 13800 | 0.0004 | - |
2.4247 | 13850 | 0.0001 | - |
2.4335 | 13900 | 0.0003 | - |
2.4422 | 13950 | 0.0001 | - |
2.4510 | 14000 | 0.0001 | - |
2.4597 | 14050 | 0.0001 | - |
2.4685 | 14100 | 0.0005 | - |
2.4772 | 14150 | 0.0002 | - |
2.4860 | 14200 | 0.0001 | - |
2.4947 | 14250 | 0.0003 | - |
2.5035 | 14300 | 0.0005 | - |
2.5123 | 14350 | 0.0002 | - |
2.5210 | 14400 | 0.0002 | - |
2.5298 | 14450 | 0.0003 | - |
2.5385 | 14500 | 0.0001 | - |
2.5473 | 14550 | 0.0001 | - |
2.5560 | 14600 | 0.0002 | - |
2.5648 | 14650 | 0.0002 | - |
2.5735 | 14700 | 0.0001 | - |
2.5823 | 14750 | 0.0001 | - |
2.5910 | 14800 | 0.0001 | - |
2.5998 | 14850 | 0.0003 | - |
2.6085 | 14900 | 0.0002 | - |
2.6173 | 14950 | 0.0001 | - |
2.6261 | 15000 | 0.0001 | - |
2.6348 | 15050 | 0.0001 | - |
2.6436 | 15100 | 0.0001 | - |
2.6523 | 15150 | 0.0002 | - |
2.6611 | 15200 | 0.0001 | - |
2.6698 | 15250 | 0.0002 | - |
2.6786 | 15300 | 0.0002 | - |
2.6873 | 15350 | 0.0002 | - |
2.6961 | 15400 | 0.0002 | - |
2.7048 | 15450 | 0.0002 | - |
2.7136 | 15500 | 0.0001 | - |
2.7223 | 15550 | 0.0002 | - |
2.7311 | 15600 | 0.0002 | - |
2.7398 | 15650 | 0.0003 | - |
2.7486 | 15700 | 0.0002 | - |
2.7574 | 15750 | 0.0001 | - |
2.7661 | 15800 | 0.0002 | - |
2.7749 | 15850 | 0.0002 | - |
2.7836 | 15900 | 0.0003 | - |
2.7924 | 15950 | 0.0004 | - |
2.8011 | 16000 | 0.0007 | - |
2.8099 | 16050 | 0.0001 | - |
2.8186 | 16100 | 0.0001 | - |
2.8274 | 16150 | 0.0002 | - |
2.8361 | 16200 | 0.0002 | - |
2.8449 | 16250 | 0.0001 | - |
2.8536 | 16300 | 0.0001 | - |
2.8624 | 16350 | 0.0002 | - |
2.8711 | 16400 | 0.0002 | - |
2.8799 | 16450 | 0.0001 | - |
2.8887 | 16500 | 0.0002 | - |
2.8974 | 16550 | 0.0002 | - |
2.9062 | 16600 | 0.0001 | - |
2.9149 | 16650 | 0.0001 | - |
2.9237 | 16700 | 0.0001 | - |
2.9324 | 16750 | 0.0003 | - |
2.9412 | 16800 | 0.0002 | - |
2.9499 | 16850 | 0.0003 | - |
2.9587 | 16900 | 0.0001 | - |
2.9674 | 16950 | 0.0002 | - |
2.9762 | 17000 | 0.0001 | - |
2.9849 | 17050 | 0.0001 | - |
2.9937 | 17100 | 0.0001 | - |
3.0 | 17136 | - | 0.0419 |
3.0025 | 17150 | 0.0002 | - |
3.0112 | 17200 | 0.0002 | - |
3.0200 | 17250 | 0.0003 | - |
3.0287 | 17300 | 0.0001 | - |
3.0375 | 17350 | 0.0002 | - |
3.0462 | 17400 | 0.0001 | - |
3.0550 | 17450 | 0.0002 | - |
3.0637 | 17500 | 0.0002 | - |
3.0725 | 17550 | 0.0002 | - |
3.0812 | 17600 | 0.0001 | - |
3.0900 | 17650 | 0.0001 | - |
3.0987 | 17700 | 0.0001 | - |
3.1075 | 17750 | 0.0001 | - |
3.1162 | 17800 | 0.0001 | - |
3.125 | 17850 | 0.0001 | - |
3.1338 | 17900 | 0.0002 | - |
3.1425 | 17950 | 0.0001 | - |
3.1513 | 18000 | 0.0003 | - |
3.1600 | 18050 | 0.0001 | - |
3.1688 | 18100 | 0.0001 | - |
3.1775 | 18150 | 0.0001 | - |
3.1863 | 18200 | 0.0002 | - |
3.1950 | 18250 | 0.0002 | - |
3.2038 | 18300 | 0.0001 | - |
3.2125 | 18350 | 0.0001 | - |
3.2213 | 18400 | 0.0001 | - |
3.2300 | 18450 | 0.0002 | - |
3.2388 | 18500 | 0.0001 | - |
3.2475 | 18550 | 0.0002 | - |
3.2563 | 18600 | 0.0001 | - |
3.2651 | 18650 | 0.0002 | - |
3.2738 | 18700 | 0.0001 | - |
3.2826 | 18750 | 0.0001 | - |
3.2913 | 18800 | 0.0001 | - |
3.3001 | 18850 | 0.0001 | - |
3.3088 | 18900 | 0.0003 | - |
3.3176 | 18950 | 0.0002 | - |
3.3263 | 19000 | 0.0001 | - |
3.3351 | 19050 | 0.0003 | - |
3.3438 | 19100 | 0.0001 | - |
3.3526 | 19150 | 0.0001 | - |
3.3613 | 19200 | 0.0001 | - |
3.3701 | 19250 | 0.0001 | - |
3.3789 | 19300 | 0.0001 | - |
3.3876 | 19350 | 0.0002 | - |
3.3964 | 19400 | 0.0001 | - |
3.4051 | 19450 | 0.0001 | - |
3.4139 | 19500 | 0.0001 | - |
3.4226 | 19550 | 0.0001 | - |
3.4314 | 19600 | 0.0001 | - |
3.4401 | 19650 | 0.0001 | - |
3.4489 | 19700 | 0.0002 | - |
3.4576 | 19750 | 0.0001 | - |
3.4664 | 19800 | 0.0001 | - |
3.4751 | 19850 | 0.0001 | - |
3.4839 | 19900 | 0.0001 | - |
3.4926 | 19950 | 0.0001 | - |
3.5014 | 20000 | 0.0001 | - |
3.5102 | 20050 | 0.0002 | - |
3.5189 | 20100 | 0.0003 | - |
3.5277 | 20150 | 0.0001 | - |
3.5364 | 20200 | 0.0002 | - |
3.5452 | 20250 | 0.0001 | - |
3.5539 | 20300 | 0.0001 | - |
3.5627 | 20350 | 0.0001 | - |
3.5714 | 20400 | 0.0004 | - |
3.5802 | 20450 | 0.0001 | - |
3.5889 | 20500 | 0.0001 | - |
3.5977 | 20550 | 0.0001 | - |
3.6064 | 20600 | 0.0002 | - |
3.6152 | 20650 | 0.0001 | - |
3.6239 | 20700 | 0.0001 | - |
3.6327 | 20750 | 0.0 | - |
3.6415 | 20800 | 0.0002 | - |
3.6502 | 20850 | 0.0001 | - |
3.6590 | 20900 | 0.0001 | - |
3.6677 | 20950 | 0.0002 | - |
3.6765 | 21000 | 0.0001 | - |
3.6852 | 21050 | 0.0001 | - |
3.6940 | 21100 | 0.0001 | - |
3.7027 | 21150 | 0.0002 | - |
3.7115 | 21200 | 0.0004 | - |
3.7202 | 21250 | 0.0001 | - |
3.7290 | 21300 | 0.0002 | - |
3.7377 | 21350 | 0.0001 | - |
3.7465 | 21400 | 0.0004 | - |
3.7553 | 21450 | 0.0002 | - |
3.7640 | 21500 | 0.0001 | - |
3.7728 | 21550 | 0.0001 | - |
3.7815 | 21600 | 0.0001 | - |
3.7903 | 21650 | 0.0001 | - |
3.7990 | 21700 | 0.0001 | - |
3.8078 | 21750 | 0.0001 | - |
3.8165 | 21800 | 0.0 | - |
3.8253 | 21850 | 0.0 | - |
3.8340 | 21900 | 0.0001 | - |
3.8428 | 21950 | 0.0003 | - |
3.8515 | 22000 | 0.0001 | - |
3.8603 | 22050 | 0.0001 | - |
3.8690 | 22100 | 0.0002 | - |
3.8778 | 22150 | 0.0001 | - |
3.8866 | 22200 | 0.0003 | - |
3.8953 | 22250 | 0.0001 | - |
3.9041 | 22300 | 0.0 | - |
3.9128 | 22350 | 0.0001 | - |
3.9216 | 22400 | 0.0002 | - |
3.9303 | 22450 | 0.0001 | - |
3.9391 | 22500 | 0.0001 | - |
3.9478 | 22550 | 0.0 | - |
3.9566 | 22600 | 0.0003 | - |
3.9653 | 22650 | 0.0001 | - |
3.9741 | 22700 | 0.0001 | - |
3.9828 | 22750 | 0.0001 | - |
3.9916 | 22800 | 0.0002 | - |
4.0 | 22848 | - | 0.0419 |
4.0004 | 22850 | 0.0 | - |
4.0091 | 22900 | 0.0001 | - |
4.0179 | 22950 | 0.0001 | - |
4.0266 | 23000 | 0.0001 | - |
4.0354 | 23050 | 0.0001 | - |
4.0441 | 23100 | 0.0002 | - |
4.0529 | 23150 | 0.0001 | - |
4.0616 | 23200 | 0.0001 | - |
4.0704 | 23250 | 0.0002 | - |
4.0791 | 23300 | 0.0 | - |
4.0879 | 23350 | 0.0001 | - |
4.0966 | 23400 | 0.0001 | - |
4.1054 | 23450 | 0.0001 | - |
4.1141 | 23500 | 0.0001 | - |
4.1229 | 23550 | 0.0002 | - |
4.1317 | 23600 | 0.0001 | - |
4.1404 | 23650 | 0.0001 | - |
4.1492 | 23700 | 0.0001 | - |
4.1579 | 23750 | 0.0002 | - |
4.1667 | 23800 | 0.0002 | - |
4.1754 | 23850 | 0.0001 | - |
4.1842 | 23900 | 0.0001 | - |
4.1929 | 23950 | 0.0001 | - |
4.2017 | 24000 | 0.0001 | - |
4.2104 | 24050 | 0.0001 | - |
4.2192 | 24100 | 0.0001 | - |
4.2279 | 24150 | 0.0 | - |
4.2367 | 24200 | 0.0001 | - |
4.2454 | 24250 | 0.0001 | - |
4.2542 | 24300 | 0.0003 | - |
4.2630 | 24350 | 0.0 | - |
4.2717 | 24400 | 0.0001 | - |
4.2805 | 24450 | 0.0 | - |
4.2892 | 24500 | 0.0001 | - |
4.2980 | 24550 | 0.0001 | - |
4.3067 | 24600 | 0.0002 | - |
4.3155 | 24650 | 0.0 | - |
4.3242 | 24700 | 0.0001 | - |
4.3330 | 24750 | 0.0001 | - |
4.3417 | 24800 | 0.0001 | - |
4.3505 | 24850 | 0.0001 | - |
4.3592 | 24900 | 0.0001 | - |
4.3680 | 24950 | 0.0 | - |
4.3768 | 25000 | 0.0002 | - |
4.3855 | 25050 | 0.0001 | - |
4.3943 | 25100 | 0.0001 | - |
4.4030 | 25150 | 0.0001 | - |
4.4118 | 25200 | 0.0001 | - |
4.4205 | 25250 | 0.0001 | - |
4.4293 | 25300 | 0.0002 | - |
4.4380 | 25350 | 0.0002 | - |
4.4468 | 25400 | 0.0001 | - |
4.4555 | 25450 | 0.0001 | - |
4.4643 | 25500 | 0.0001 | - |
4.4730 | 25550 | 0.0001 | - |
4.4818 | 25600 | 0.0001 | - |
4.4905 | 25650 | 0.0001 | - |
4.4993 | 25700 | 0.0001 | - |
4.5081 | 25750 | 0.0001 | - |
4.5168 | 25800 | 0.0001 | - |
4.5256 | 25850 | 0.0001 | - |
4.5343 | 25900 | 0.0001 | - |
4.5431 | 25950 | 0.0001 | - |
4.5518 | 26000 | 0.0 | - |
4.5606 | 26050 | 0.0 | - |
4.5693 | 26100 | 0.0001 | - |
4.5781 | 26150 | 0.0001 | - |
4.5868 | 26200 | 0.0001 | - |
4.5956 | 26250 | 0.0001 | - |
4.6043 | 26300 | 0.0001 | - |
4.6131 | 26350 | 0.0001 | - |
4.6218 | 26400 | 0.0002 | - |
4.6306 | 26450 | 0.0001 | - |
4.6394 | 26500 | 0.0001 | - |
4.6481 | 26550 | 0.0001 | - |
4.6569 | 26600 | 0.0001 | - |
4.6656 | 26650 | 0.0 | - |
4.6744 | 26700 | 0.0002 | - |
4.6831 | 26750 | 0.0 | - |
4.6919 | 26800 | 0.0001 | - |
4.7006 | 26850 | 0.0002 | - |
4.7094 | 26900 | 0.0002 | - |
4.7181 | 26950 | 0.0001 | - |
4.7269 | 27000 | 0.0001 | - |
4.7356 | 27050 | 0.0001 | - |
4.7444 | 27100 | 0.0 | - |
4.7532 | 27150 | 0.0001 | - |
4.7619 | 27200 | 0.0001 | - |
4.7707 | 27250 | 0.0001 | - |
4.7794 | 27300 | 0.0 | - |
4.7882 | 27350 | 0.0001 | - |
4.7969 | 27400 | 0.0001 | - |
4.8057 | 27450 | 0.0002 | - |
4.8144 | 27500 | 0.0 | - |
4.8232 | 27550 | 0.0001 | - |
4.8319 | 27600 | 0.0001 | - |
4.8407 | 27650 | 0.0001 | - |
4.8494 | 27700 | 0.0 | - |
4.8582 | 27750 | 0.0001 | - |
4.8669 | 27800 | 0.0001 | - |
4.8757 | 27850 | 0.0001 | - |
4.8845 | 27900 | 0.0001 | - |
4.8932 | 27950 | 0.0001 | - |
4.9020 | 28000 | 0.0001 | - |
4.9107 | 28050 | 0.0001 | - |
4.9195 | 28100 | 0.0 | - |
4.9282 | 28150 | 0.0001 | - |
4.9370 | 28200 | 0.0001 | - |
4.9457 | 28250 | 0.0001 | - |
4.9545 | 28300 | 0.0001 | - |
4.9632 | 28350 | 0.0001 | - |
4.9720 | 28400 | 0.0001 | - |
4.9807 | 28450 | 0.0001 | - |
4.9895 | 28500 | 0.0002 | - |
4.9982 | 28550 | 0.0 | - |
5.0 | 28560 | - | 0.0425 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}