manucos's picture
End of training
4a888d0 verified
metadata
license: apache-2.0
base_model: BSC-LT/roberta-base-biomedical-clinical-es
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: roberta-base-biomedical-clinical-es
    results: []

roberta-base-biomedical-clinical-es

This model is a fine-tuned version of BSC-LT/roberta-base-biomedical-clinical-es on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3818
  • Precision: 0.8662
  • Recall: 0.8919
  • F1: 0.8788
  • Accuracy: 0.9366

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 280 0.3298 0.7938 0.8326 0.8127 0.9125
0.5032 2.0 560 0.2747 0.8433 0.8770 0.8598 0.9296
0.5032 3.0 840 0.2891 0.8499 0.8637 0.8567 0.9265
0.1441 4.0 1120 0.2790 0.8453 0.8904 0.8672 0.9338
0.1441 5.0 1400 0.3087 0.8519 0.8948 0.8728 0.9344
0.0841 6.0 1680 0.3025 0.8746 0.8993 0.8868 0.9383
0.0841 7.0 1960 0.3373 0.8656 0.8874 0.8764 0.9358
0.0481 8.0 2240 0.3364 0.8717 0.8859 0.8788 0.9372
0.0355 9.0 2520 0.3608 0.8576 0.8830 0.8701 0.9338
0.0355 10.0 2800 0.3800 0.8719 0.8874 0.8796 0.9344
0.0243 11.0 3080 0.3760 0.8637 0.8919 0.8776 0.9363
0.0243 12.0 3360 0.3718 0.8615 0.8844 0.8728 0.9349
0.0207 13.0 3640 0.3724 0.8644 0.8874 0.8757 0.9358
0.0207 14.0 3920 0.3848 0.8680 0.8963 0.8819 0.9372
0.017 15.0 4200 0.3818 0.8662 0.8919 0.8788 0.9366

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1