metadata
license: apache-2.0
base_model: BSC-LT/roberta-base-biomedical-clinical-es
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-base-biomedical-clinical-es
results: []
roberta-base-biomedical-clinical-es
This model is a fine-tuned version of BSC-LT/roberta-base-biomedical-clinical-es on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3818
- Precision: 0.8662
- Recall: 0.8919
- F1: 0.8788
- Accuracy: 0.9366
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 280 | 0.3298 | 0.7938 | 0.8326 | 0.8127 | 0.9125 |
0.5032 | 2.0 | 560 | 0.2747 | 0.8433 | 0.8770 | 0.8598 | 0.9296 |
0.5032 | 3.0 | 840 | 0.2891 | 0.8499 | 0.8637 | 0.8567 | 0.9265 |
0.1441 | 4.0 | 1120 | 0.2790 | 0.8453 | 0.8904 | 0.8672 | 0.9338 |
0.1441 | 5.0 | 1400 | 0.3087 | 0.8519 | 0.8948 | 0.8728 | 0.9344 |
0.0841 | 6.0 | 1680 | 0.3025 | 0.8746 | 0.8993 | 0.8868 | 0.9383 |
0.0841 | 7.0 | 1960 | 0.3373 | 0.8656 | 0.8874 | 0.8764 | 0.9358 |
0.0481 | 8.0 | 2240 | 0.3364 | 0.8717 | 0.8859 | 0.8788 | 0.9372 |
0.0355 | 9.0 | 2520 | 0.3608 | 0.8576 | 0.8830 | 0.8701 | 0.9338 |
0.0355 | 10.0 | 2800 | 0.3800 | 0.8719 | 0.8874 | 0.8796 | 0.9344 |
0.0243 | 11.0 | 3080 | 0.3760 | 0.8637 | 0.8919 | 0.8776 | 0.9363 |
0.0243 | 12.0 | 3360 | 0.3718 | 0.8615 | 0.8844 | 0.8728 | 0.9349 |
0.0207 | 13.0 | 3640 | 0.3724 | 0.8644 | 0.8874 | 0.8757 | 0.9358 |
0.0207 | 14.0 | 3920 | 0.3848 | 0.8680 | 0.8963 | 0.8819 | 0.9372 |
0.017 | 15.0 | 4200 | 0.3818 | 0.8662 | 0.8919 | 0.8788 | 0.9366 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1