Llama-3.1-8B-medquad-V3
This model is a fine-tuned version of meta-llama/Llama-3.1-8B on the MedQuAD: Ben-Abacha and Demner-Fushman (2019) dataset. It achieves the following results on the evaluation set:
- Loss: 0.9213
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 12
- total_train_batch_size: 240
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6067 | 0.1826 | 10 | 1.5411 |
1.5616 | 0.3653 | 20 | 1.2822 |
1.2619 | 0.5479 | 30 | 1.1497 |
1.1906 | 0.7306 | 40 | 1.0566 |
1.0764 | 0.9132 | 50 | 0.9903 |
0.9496 | 1.0959 | 60 | 0.9758 |
1.0131 | 1.2785 | 70 | 0.9630 |
0.9908 | 1.4612 | 80 | 0.9502 |
0.9786 | 1.6438 | 90 | 0.9434 |
0.9182 | 1.8265 | 100 | 0.9366 |
0.9621 | 2.0091 | 110 | 0.9341 |
0.9724 | 2.1918 | 120 | 0.9254 |
0.8955 | 2.3744 | 130 | 0.9213 |
Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 33
Inference API (serverless) does not yet support peft models for this pipeline type.
Model tree for mariamoracrossitcr/Llama-3.1-8B-medquad-V3
Base model
meta-llama/Llama-3.1-8B