File size: 2,203 Bytes
57dba80 bf86082 57dba80 bf86082 57dba80 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
---
base_model: meta-llama/Llama-3.1-8B
library_name: peft
license: llama3.1
tags:
- question-answering
- QA
- text-generation
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-3.1-8B-medquad-V3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Llama-3.1-8B-medquad-V3
This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the MedQuAD: Ben-Abacha and Demner-Fushman (2019) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 12
- total_train_batch_size: 240
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.6067 | 0.1826 | 10 | 1.5411 |
| 1.5616 | 0.3653 | 20 | 1.2822 |
| 1.2619 | 0.5479 | 30 | 1.1497 |
| 1.1906 | 0.7306 | 40 | 1.0566 |
| 1.0764 | 0.9132 | 50 | 0.9903 |
| 0.9496 | 1.0959 | 60 | 0.9758 |
| 1.0131 | 1.2785 | 70 | 0.9630 |
| 0.9908 | 1.4612 | 80 | 0.9502 |
| 0.9786 | 1.6438 | 90 | 0.9434 |
| 0.9182 | 1.8265 | 100 | 0.9366 |
| 0.9621 | 2.0091 | 110 | 0.9341 |
| 0.9724 | 2.1918 | 120 | 0.9254 |
| 0.8955 | 2.3744 | 130 | 0.9213 |
### Framework versions
- PEFT 0.13.0
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0 |