marinone94's picture
update model card README.md
bb66eab
|
raw
history blame
2.27 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - fleurs
metrics:
  - wer
model-index:
  - name: whisper-training-blog
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fleurs
          type: fleurs
          config: sv_se
          split: validation
          args: sv_se
        metrics:
          - name: Wer
            type: wer
            value: 180.05748044068338

whisper-training-blog

This model is a fine-tuned version of openai/whisper-tiny on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0050
  • Wer: 180.0575

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.3
  • training_steps: 448
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.4112 0.1 44 1.4919 245.3457
1.0502 0.2 88 1.2255 220.1501
0.9033 0.29 132 1.1203 206.2430
0.8141 1.06 176 1.0675 201.9639
0.8029 1.16 220 1.0394 178.3650
0.6324 1.25 264 1.0301 221.2997
0.6972 2.02 308 1.0134 176.6725
0.6052 2.12 352 1.0065 194.7150
0.6047 2.21 396 1.0030 160.9133
0.5849 2.31 440 1.0050 180.0575

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.0+cu118
  • Datasets 2.10.1
  • Tokenizers 0.13.3