metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- fleurs
metrics:
- wer
model-index:
- name: whisper-training-blog
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fleurs
type: fleurs
config: sv_se
split: validation
args: sv_se
metrics:
- name: Wer
type: wer
value: 180.05748044068338
whisper-training-blog
This model is a fine-tuned version of openai/whisper-tiny on the fleurs dataset. It achieves the following results on the evaluation set:
- Loss: 1.0050
- Wer: 180.0575
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-06
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.3
- training_steps: 448
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.4112 | 0.1 | 44 | 1.4919 | 245.3457 |
1.0502 | 0.2 | 88 | 1.2255 | 220.1501 |
0.9033 | 0.29 | 132 | 1.1203 | 206.2430 |
0.8141 | 1.06 | 176 | 1.0675 | 201.9639 |
0.8029 | 1.16 | 220 | 1.0394 | 178.3650 |
0.6324 | 1.25 | 264 | 1.0301 | 221.2997 |
0.6972 | 2.02 | 308 | 1.0134 | 176.6725 |
0.6052 | 2.12 | 352 | 1.0065 | 194.7150 |
0.6047 | 2.21 | 396 | 1.0030 | 160.9133 |
0.5849 | 2.31 | 440 | 1.0050 | 180.0575 |
Framework versions
- Transformers 4.27.3
- Pytorch 2.0.0+cu118
- Datasets 2.10.1
- Tokenizers 0.13.3