airplaneears-flux / README.md
markury's picture
Model card auto-generated by SimpleTuner
e95b275 verified
|
raw
history blame
3.64 kB
metadata
license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - safe-for-work
  - lora
  - template:sd-lora
  - standard
inference: true
widget:
  - text: unconditional (blank prompt)
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_0_0.png
  - text: a close up photo of an orange cat with airplane ears
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_1_0.png
  - text: >-
      a photo of a black cat with airplane ears sitting in the cockpit of a
      boeing 747 airplane with the twin towers in the background on September
      11th, 2001
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_2_0.png
  - text: a photo of a fluffy white cat with airplane ears
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_3_0.png

airplaneears-flux

This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

a photo of a fluffy white cat with airplane ears

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
a close up photo of an orange cat with airplane ears
Negative Prompt
blurry, cropped, ugly
Prompt
a photo of a black cat with airplane ears sitting in the cockpit of a boeing 747 airplane with the twin towers in the background on September 11th, 2001
Negative Prompt
blurry, cropped, ugly
Prompt
a photo of a fluffy white cat with airplane ears
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 10
  • Training steps: 5200
  • Learning rate: 2e-05
  • Effective batch size: 2
    • Micro-batch size: 2
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: optimi-lion
  • Precision: Pure BF16
  • Quantised: Yes: int8-quanto
  • Xformers: Not used
  • LoRA Rank: 16
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

airplaneears-512

  • Repeats: 5
  • Total number of images: 39
  • Total number of aspect buckets: 6
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

airplaneears-768

  • Repeats: 5
  • Total number of images: 35
  • Total number of aspect buckets: 9
  • Resolution: 0.589824 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

airplaneears-512-crop

  • Repeats: 5
  • Total number of images: 35
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

airplaneears-768-crop

  • Repeats: 5
  • Total number of images: 39
  • Total number of aspect buckets: 1
  • Resolution: 0.589824 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'markury/airplaneears-flux'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "a photo of a fluffy white cat with airplane ears"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")