tinyllama-1.1b-sum-dpo-full_LR5e-8_BS32_2epochs_old
This model is a fine-tuned version of martimfasantos/tinyllama-1.1b-sum-sft-full_old on the openai/summarize_from_feedback dataset. It achieves the following results on the evaluation set:
- Loss: 0.6856
- Rewards/chosen: -0.0618
- Rewards/rejected: -0.0788
- Rewards/accuracies: 0.5955
- Rewards/margins: 0.0169
- Logps/rejected: -71.0584
- Logps/chosen: -64.8961
- Logits/rejected: -3.0381
- Logits/chosen: -3.0439
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-08
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6932 | 0.0345 | 100 | 0.6932 | 0.0000 | 0.0001 | 0.4805 | -0.0001 | -63.1716 | -58.7091 | -3.1575 | -3.1632 |
0.6931 | 0.0689 | 200 | 0.6932 | -0.0000 | 0.0000 | 0.4863 | -0.0000 | -63.1768 | -58.7119 | -3.1575 | -3.1632 |
0.6931 | 0.1034 | 300 | 0.6932 | 0.0001 | 0.0002 | 0.4756 | -0.0001 | -63.1627 | -58.7008 | -3.1575 | -3.1632 |
0.693 | 0.1378 | 400 | 0.6931 | 0.0002 | 0.0002 | 0.5007 | 0.0000 | -63.1637 | -58.6940 | -3.1572 | -3.1629 |
0.6931 | 0.1723 | 500 | 0.6931 | 0.0003 | 0.0002 | 0.4942 | 0.0001 | -63.1590 | -58.6825 | -3.1569 | -3.1625 |
0.6928 | 0.2068 | 600 | 0.6931 | 0.0006 | 0.0005 | 0.5023 | 0.0002 | -63.1320 | -58.6476 | -3.1556 | -3.1613 |
0.692 | 0.2412 | 700 | 0.6930 | 0.0010 | 0.0006 | 0.5414 | 0.0004 | -63.1153 | -58.6091 | -3.1543 | -3.1599 |
0.6923 | 0.2757 | 800 | 0.6928 | 0.0013 | 0.0006 | 0.5588 | 0.0007 | -63.1219 | -58.5861 | -3.1529 | -3.1585 |
0.6912 | 0.3101 | 900 | 0.6927 | 0.0017 | 0.0007 | 0.5660 | 0.0010 | -63.1103 | -58.5464 | -3.1501 | -3.1558 |
0.6909 | 0.3446 | 1000 | 0.6925 | 0.0018 | 0.0005 | 0.5646 | 0.0013 | -63.1285 | -58.5271 | -3.1481 | -3.1538 |
0.6907 | 0.3790 | 1100 | 0.6924 | 0.0020 | 0.0003 | 0.5604 | 0.0016 | -63.1469 | -58.5154 | -3.1457 | -3.1513 |
0.6898 | 0.4135 | 1200 | 0.6921 | 0.0018 | -0.0003 | 0.5743 | 0.0022 | -63.2143 | -58.5306 | -3.1424 | -3.1480 |
0.688 | 0.4480 | 1300 | 0.6919 | 0.0018 | -0.0008 | 0.5741 | 0.0026 | -63.2606 | -58.5351 | -3.1392 | -3.1448 |
0.6888 | 0.4824 | 1400 | 0.6917 | 0.0011 | -0.0019 | 0.5723 | 0.0030 | -63.3749 | -58.6054 | -3.1364 | -3.1420 |
0.6886 | 0.5169 | 1500 | 0.6915 | 0.0002 | -0.0033 | 0.5737 | 0.0035 | -63.5057 | -58.6878 | -3.1325 | -3.1382 |
0.6885 | 0.5513 | 1600 | 0.6912 | -0.0003 | -0.0043 | 0.5769 | 0.0040 | -63.6057 | -58.7407 | -3.1295 | -3.1351 |
0.6861 | 0.5858 | 1700 | 0.6910 | -0.0016 | -0.0062 | 0.5746 | 0.0046 | -63.8004 | -58.8729 | -3.1253 | -3.1310 |
0.6872 | 0.6203 | 1800 | 0.6908 | -0.0035 | -0.0085 | 0.5839 | 0.0050 | -64.0325 | -59.0604 | -3.1214 | -3.1270 |
0.6862 | 0.6547 | 1900 | 0.6905 | -0.0054 | -0.0110 | 0.5802 | 0.0057 | -64.2826 | -59.2489 | -3.1157 | -3.1214 |
0.6859 | 0.6892 | 2000 | 0.6903 | -0.0080 | -0.0142 | 0.5869 | 0.0062 | -64.5982 | -59.5137 | -3.1119 | -3.1176 |
0.6846 | 0.7236 | 2100 | 0.6899 | -0.0107 | -0.0176 | 0.5829 | 0.0069 | -64.9428 | -59.7842 | -3.1059 | -3.1116 |
0.6861 | 0.7581 | 2200 | 0.6897 | -0.0133 | -0.0207 | 0.5869 | 0.0074 | -65.2491 | -60.0455 | -3.1025 | -3.1081 |
0.6836 | 0.7926 | 2300 | 0.6895 | -0.0168 | -0.0247 | 0.5922 | 0.0079 | -65.6530 | -60.3904 | -3.0987 | -3.1044 |
0.6847 | 0.8270 | 2400 | 0.6892 | -0.0209 | -0.0296 | 0.5869 | 0.0087 | -66.1402 | -60.8069 | -3.0949 | -3.1007 |
0.6838 | 0.8615 | 2500 | 0.6889 | -0.0250 | -0.0343 | 0.5904 | 0.0093 | -66.6113 | -61.2157 | -3.0910 | -3.0968 |
0.6841 | 0.8959 | 2600 | 0.6886 | -0.0284 | -0.0384 | 0.5955 | 0.0100 | -67.0226 | -61.5496 | -3.0877 | -3.0933 |
0.6824 | 0.9304 | 2700 | 0.6883 | -0.0321 | -0.0428 | 0.5855 | 0.0107 | -67.4593 | -61.9186 | -3.0839 | -3.0897 |
0.6824 | 0.9649 | 2800 | 0.6880 | -0.0334 | -0.0447 | 0.5929 | 0.0113 | -67.6515 | -62.0566 | -3.0811 | -3.0868 |
0.6812 | 0.9993 | 2900 | 0.6878 | -0.0363 | -0.0481 | 0.5906 | 0.0118 | -67.9890 | -62.3425 | -3.0775 | -3.0832 |
0.6819 | 1.0338 | 3000 | 0.6877 | -0.0373 | -0.0494 | 0.5932 | 0.0120 | -68.1166 | -62.4440 | -3.0740 | -3.0797 |
0.6796 | 1.0682 | 3100 | 0.6874 | -0.0392 | -0.0518 | 0.5987 | 0.0126 | -68.3560 | -62.6296 | -3.0701 | -3.0759 |
0.6776 | 1.1027 | 3200 | 0.6872 | -0.0409 | -0.0540 | 0.5906 | 0.0131 | -68.5819 | -62.8043 | -3.0674 | -3.0732 |
0.6824 | 1.1371 | 3300 | 0.6870 | -0.0436 | -0.0571 | 0.5946 | 0.0135 | -68.8899 | -63.0750 | -3.0643 | -3.0701 |
0.6787 | 1.1716 | 3400 | 0.6869 | -0.0458 | -0.0596 | 0.5941 | 0.0138 | -69.1415 | -63.2913 | -3.0611 | -3.0668 |
0.6801 | 1.2061 | 3500 | 0.6867 | -0.0482 | -0.0624 | 0.5929 | 0.0142 | -69.4185 | -63.5317 | -3.0588 | -3.0646 |
0.6797 | 1.2405 | 3600 | 0.6866 | -0.0499 | -0.0644 | 0.5915 | 0.0145 | -69.6206 | -63.6998 | -3.0559 | -3.0616 |
0.6783 | 1.2750 | 3700 | 0.6864 | -0.0511 | -0.0659 | 0.5904 | 0.0149 | -69.7728 | -63.8172 | -3.0542 | -3.0599 |
0.6771 | 1.3094 | 3800 | 0.6864 | -0.0521 | -0.0672 | 0.5920 | 0.0151 | -69.8981 | -63.9235 | -3.0522 | -3.0580 |
0.6785 | 1.3439 | 3900 | 0.6862 | -0.0536 | -0.0690 | 0.5922 | 0.0154 | -70.0814 | -64.0693 | -3.0499 | -3.0556 |
0.6807 | 1.3784 | 4000 | 0.6861 | -0.0551 | -0.0708 | 0.5908 | 0.0157 | -70.2593 | -64.2214 | -3.0484 | -3.0541 |
0.6769 | 1.4128 | 4100 | 0.6860 | -0.0563 | -0.0722 | 0.5929 | 0.0159 | -70.3988 | -64.3376 | -3.0467 | -3.0525 |
0.6722 | 1.4473 | 4200 | 0.6859 | -0.0577 | -0.0738 | 0.5946 | 0.0161 | -70.5629 | -64.4845 | -3.0456 | -3.0513 |
0.6769 | 1.4817 | 4300 | 0.6858 | -0.0582 | -0.0745 | 0.5939 | 0.0163 | -70.6349 | -64.5350 | -3.0442 | -3.0499 |
0.6785 | 1.5162 | 4400 | 0.6858 | -0.0586 | -0.0750 | 0.5955 | 0.0164 | -70.6776 | -64.5703 | -3.0432 | -3.0490 |
0.6735 | 1.5507 | 4500 | 0.6858 | -0.0597 | -0.0762 | 0.5920 | 0.0164 | -70.7972 | -64.6853 | -3.0421 | -3.0479 |
0.6786 | 1.5851 | 4600 | 0.6857 | -0.0603 | -0.0769 | 0.5967 | 0.0166 | -70.8698 | -64.7462 | -3.0414 | -3.0471 |
0.6803 | 1.6196 | 4700 | 0.6857 | -0.0603 | -0.0770 | 0.5978 | 0.0167 | -70.8781 | -64.7435 | -3.0408 | -3.0466 |
0.6789 | 1.6540 | 4800 | 0.6856 | -0.0607 | -0.0775 | 0.5929 | 0.0168 | -70.9263 | -64.7804 | -3.0399 | -3.0457 |
0.6723 | 1.6885 | 4900 | 0.6856 | -0.0611 | -0.0779 | 0.5985 | 0.0168 | -70.9741 | -64.8213 | -3.0390 | -3.0448 |
0.6767 | 1.7229 | 5000 | 0.6856 | -0.0613 | -0.0781 | 0.5960 | 0.0169 | -70.9925 | -64.8377 | -3.0388 | -3.0446 |
0.6774 | 1.7574 | 5100 | 0.6856 | -0.0615 | -0.0784 | 0.5939 | 0.0168 | -71.0176 | -64.8661 | -3.0387 | -3.0445 |
0.6748 | 1.7919 | 5200 | 0.6855 | -0.0616 | -0.0786 | 0.5939 | 0.0170 | -71.0377 | -64.8736 | -3.0383 | -3.0441 |
0.6761 | 1.8263 | 5300 | 0.6855 | -0.0617 | -0.0787 | 0.5950 | 0.0170 | -71.0469 | -64.8778 | -3.0380 | -3.0439 |
0.6738 | 1.8608 | 5400 | 0.6855 | -0.0618 | -0.0788 | 0.5985 | 0.0171 | -71.0633 | -64.8885 | -3.0380 | -3.0438 |
0.6821 | 1.8952 | 5500 | 0.6855 | -0.0618 | -0.0788 | 0.5934 | 0.0170 | -71.0638 | -64.8919 | -3.0379 | -3.0437 |
0.6724 | 1.9297 | 5600 | 0.6855 | -0.0619 | -0.0788 | 0.5955 | 0.0170 | -71.0635 | -64.8979 | -3.0379 | -3.0437 |
0.6745 | 1.9642 | 5700 | 0.6855 | -0.0619 | -0.0790 | 0.5957 | 0.0171 | -71.0788 | -64.9037 | -3.0380 | -3.0438 |
0.6767 | 1.9986 | 5800 | 0.6856 | -0.0618 | -0.0788 | 0.5955 | 0.0169 | -71.0584 | -64.8961 | -3.0381 | -3.0439 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.