Edit model card

MBERTbase_REDv2

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3320
  • F1: 0.5326
  • Roc Auc: 0.7058
  • Accuracy: 0.4383

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 64 0.4206 0.0 0.5 0.0
No log 2.0 128 0.3876 0.0901 0.5328 0.0589
No log 3.0 192 0.3599 0.2983 0.5993 0.2081
No log 4.0 256 0.3434 0.3808 0.6365 0.2965
No log 5.0 320 0.3360 0.4182 0.6474 0.3204
No log 6.0 384 0.3267 0.4638 0.6703 0.3646
No log 7.0 448 0.3259 0.5033 0.6945 0.3959
0.3376 8.0 512 0.3226 0.5140 0.6978 0.4217
0.3376 9.0 576 0.3248 0.5099 0.6959 0.4199
0.3376 10.0 640 0.3252 0.5230 0.6988 0.4162
0.3376 11.0 704 0.3258 0.5211 0.7027 0.4217
0.3376 12.0 768 0.3308 0.5214 0.6998 0.4309
0.3376 13.0 832 0.3304 0.5305 0.7052 0.4383
0.3376 14.0 896 0.3318 0.5297 0.7054 0.4309
0.3376 15.0 960 0.3320 0.5326 0.7058 0.4383

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
0
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mateiaassAI/MBERTbase_REDv2

Finetuned
(511)
this model