matthieulel's picture
End of training
fa9f7d2 verified
|
raw
history blame
4.47 kB
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224-pt22k
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: beit-large-patch16-224-pt22k-finetuned-galaxy10-decals
    results: []

beit-large-patch16-224-pt22k-finetuned-galaxy10-decals

This model is a fine-tuned version of microsoft/beit-large-patch16-224-pt22k on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5038
  • Accuracy: 0.8794
  • Precision: 0.8781
  • Recall: 0.8794
  • F1: 0.8780

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5123 0.99 62 1.2940 0.5276 0.5208 0.5276 0.5021
0.9691 2.0 125 0.7947 0.7272 0.7161 0.7272 0.7095
0.7326 2.99 187 0.5790 0.8010 0.7979 0.8010 0.7970
0.6346 4.0 250 0.6230 0.7931 0.7984 0.7931 0.7883
0.5945 4.99 312 0.5042 0.8360 0.8390 0.8360 0.8349
0.5607 6.0 375 0.4401 0.8455 0.8464 0.8455 0.8421
0.5137 6.99 437 0.4689 0.8506 0.8533 0.8506 0.8449
0.4842 8.0 500 0.4586 0.8484 0.8560 0.8484 0.8498
0.4816 8.99 562 0.4310 0.8534 0.8548 0.8534 0.8518
0.4538 10.0 625 0.4380 0.8529 0.8528 0.8529 0.8493
0.4334 10.99 687 0.4288 0.8625 0.8628 0.8625 0.8617
0.4086 12.0 750 0.4904 0.8608 0.8627 0.8608 0.8592
0.4143 12.99 812 0.4148 0.8675 0.8697 0.8675 0.8663
0.4164 14.0 875 0.4477 0.8647 0.8676 0.8647 0.8649
0.3464 14.99 937 0.4843 0.8512 0.8534 0.8512 0.8500
0.3654 16.0 1000 0.4632 0.8625 0.8631 0.8625 0.8619
0.2933 16.99 1062 0.4811 0.8596 0.8605 0.8596 0.8574
0.3299 18.0 1125 0.4574 0.8664 0.8664 0.8664 0.8656
0.3178 18.99 1187 0.4504 0.8703 0.8697 0.8703 0.8687
0.2976 20.0 1250 0.5002 0.8636 0.8619 0.8636 0.8610
0.2982 20.99 1312 0.4977 0.8720 0.8701 0.8720 0.8701
0.3092 22.0 1375 0.4820 0.8703 0.8710 0.8703 0.8687
0.2835 22.99 1437 0.4671 0.8715 0.8711 0.8715 0.8709
0.2596 24.0 1500 0.5075 0.8732 0.8737 0.8732 0.8729
0.2669 24.99 1562 0.4963 0.8732 0.8719 0.8732 0.8716
0.2409 26.0 1625 0.4955 0.8766 0.8749 0.8766 0.8754
0.2409 26.99 1687 0.4988 0.8777 0.8783 0.8777 0.8776
0.2683 28.0 1750 0.5038 0.8794 0.8781 0.8794 0.8780
0.2299 28.99 1812 0.5038 0.8771 0.8760 0.8771 0.8759
0.2394 29.76 1860 0.5048 0.8788 0.8779 0.8788 0.8775

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1