matthieulel's picture
End of training
dce4f2e verified
metadata
license: apache-2.0
base_model: microsoft/beit-large-patch16-224-pt22k
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: beit-large-patch16-224-pt22k-finetuned-galaxy10-decals
    results: []

beit-large-patch16-224-pt22k-finetuned-galaxy10-decals

This model is a fine-tuned version of microsoft/beit-large-patch16-224-pt22k on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5047
  • Accuracy: 0.8771
  • Precision: 0.8770
  • Recall: 0.8771
  • F1: 0.8764

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5632 0.99 62 1.3358 0.5265 0.5377 0.5265 0.4840
0.8801 2.0 125 0.7053 0.7717 0.7710 0.7717 0.7559
0.7408 2.99 187 0.5995 0.7897 0.7878 0.7897 0.7803
0.6124 4.0 250 0.5448 0.8140 0.8178 0.8140 0.8076
0.5799 4.99 312 0.5354 0.8174 0.8224 0.8174 0.8165
0.567 6.0 375 0.5044 0.8247 0.8314 0.8247 0.8194
0.5237 6.99 437 0.4913 0.8388 0.8429 0.8388 0.8371
0.4674 8.0 500 0.4927 0.8484 0.8541 0.8484 0.8477
0.4869 8.99 562 0.4167 0.8546 0.8570 0.8546 0.8526
0.4442 10.0 625 0.4086 0.8579 0.8583 0.8579 0.8564
0.4294 10.99 687 0.4743 0.8489 0.8516 0.8489 0.8489
0.4032 12.0 750 0.4350 0.8664 0.8651 0.8664 0.8647
0.4028 12.99 812 0.4443 0.8568 0.8623 0.8568 0.8561
0.3939 14.0 875 0.4193 0.8608 0.8605 0.8608 0.8593
0.3447 14.99 937 0.4289 0.8698 0.8692 0.8698 0.8688
0.354 16.0 1000 0.4471 0.8653 0.8661 0.8653 0.8648
0.2934 16.99 1062 0.4888 0.8574 0.8573 0.8574 0.8546
0.3262 18.0 1125 0.4605 0.8602 0.8602 0.8602 0.8588
0.3287 18.99 1187 0.4439 0.8681 0.8682 0.8681 0.8673
0.2848 20.0 1250 0.4986 0.8641 0.8633 0.8641 0.8615
0.283 20.99 1312 0.4663 0.8692 0.8681 0.8692 0.8676
0.3106 22.0 1375 0.4668 0.8720 0.8735 0.8720 0.8697
0.2785 22.99 1437 0.4899 0.8664 0.8649 0.8664 0.8650
0.2635 24.0 1500 0.5047 0.8771 0.8770 0.8771 0.8764
0.2573 24.99 1562 0.5144 0.8732 0.8730 0.8732 0.8723
0.238 26.0 1625 0.5012 0.8732 0.8729 0.8732 0.8723
0.2358 26.99 1687 0.5021 0.8681 0.8709 0.8681 0.8690
0.2624 28.0 1750 0.5154 0.8715 0.8711 0.8715 0.8705
0.229 28.99 1812 0.5087 0.8698 0.8690 0.8698 0.8689
0.227 29.76 1860 0.5104 0.8726 0.8725 0.8726 0.8718

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1