matthieulel's picture
End of training
11e622a verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-atto-1k-224
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: convnextv2-atto-1k-224-finetuned-galaxy10-decals
    results: []

convnextv2-atto-1k-224-finetuned-galaxy10-decals

This model is a fine-tuned version of facebook/convnextv2-atto-1k-224 on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4668
  • Accuracy: 0.8461
  • Precision: 0.8444
  • Recall: 0.8461
  • F1: 0.8442

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.0062 0.99 62 1.8928 0.3450 0.3432 0.3450 0.2956
1.1323 2.0 125 1.0026 0.6590 0.6634 0.6590 0.6399
0.8977 2.99 187 0.7348 0.7486 0.7415 0.7486 0.7399
0.7119 4.0 250 0.6395 0.7892 0.7878 0.7892 0.7770
0.6393 4.99 312 0.5801 0.7971 0.7916 0.7971 0.7915
0.6463 6.0 375 0.5958 0.7976 0.8147 0.7976 0.7909
0.6197 6.99 437 0.5363 0.8151 0.8119 0.8151 0.8112
0.5779 8.0 500 0.5276 0.8207 0.8205 0.8207 0.8185
0.5841 8.99 562 0.5197 0.8185 0.8203 0.8185 0.8157
0.5597 10.0 625 0.5025 0.8253 0.8192 0.8253 0.8193
0.5437 10.99 687 0.4912 0.8309 0.8295 0.8309 0.8296
0.5242 12.0 750 0.5001 0.8275 0.8303 0.8275 0.8245
0.5029 12.99 812 0.5075 0.8241 0.8228 0.8241 0.8208
0.5396 14.0 875 0.4784 0.8393 0.8395 0.8393 0.8371
0.4746 14.99 937 0.4727 0.8331 0.8318 0.8331 0.8317
0.4786 16.0 1000 0.4856 0.8331 0.8308 0.8331 0.8300
0.4338 16.99 1062 0.4884 0.8337 0.8333 0.8337 0.8309
0.4772 18.0 1125 0.4618 0.8405 0.8370 0.8405 0.8377
0.4733 18.99 1187 0.4740 0.8393 0.8394 0.8393 0.8381
0.4475 20.0 1250 0.4678 0.8388 0.8349 0.8388 0.8345
0.4229 20.99 1312 0.4881 0.8331 0.8317 0.8331 0.8303
0.46 22.0 1375 0.4728 0.8410 0.8382 0.8410 0.8371
0.4298 22.99 1437 0.4642 0.8360 0.8348 0.8360 0.8345
0.4225 24.0 1500 0.4706 0.8371 0.8368 0.8371 0.8359
0.426 24.99 1562 0.4733 0.8399 0.8367 0.8399 0.8371
0.3839 26.0 1625 0.4682 0.8444 0.8423 0.8444 0.8422
0.4007 26.99 1687 0.4665 0.8382 0.8371 0.8382 0.8367
0.4245 28.0 1750 0.4695 0.8388 0.8357 0.8388 0.8358
0.3868 28.99 1812 0.4668 0.8461 0.8444 0.8461 0.8442
0.3933 29.76 1860 0.4657 0.8461 0.8442 0.8461 0.8440

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1