matthieulel's picture
End of training
e141d46 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-large-patch4-window12-192-22k
tags:
  - image-classification
  - vision
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: swinv2-large-patch4-window12-192-22k-finetuned-galaxy10-decals
    results: []

swinv2-large-patch4-window12-192-22k-finetuned-galaxy10-decals

This model is a fine-tuned version of microsoft/swinv2-large-patch4-window12-192-22k on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4372
  • Accuracy: 0.8568
  • Precision: 0.8575
  • Recall: 0.8568
  • F1: 0.8550

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.974 0.99 62 0.7350 0.7480 0.7464 0.7480 0.7365
0.7716 2.0 125 0.6093 0.7982 0.8102 0.7982 0.7960
0.6813 2.99 187 0.5034 0.8286 0.8301 0.8286 0.8254
0.5998 4.0 250 0.4645 0.8433 0.8431 0.8433 0.8403
0.5306 4.99 312 0.4889 0.8320 0.8377 0.8320 0.8336
0.5234 6.0 375 0.5036 0.8309 0.8398 0.8309 0.8278
0.4984 6.99 437 0.4482 0.8478 0.8484 0.8478 0.8461
0.456 8.0 500 0.4370 0.8557 0.8573 0.8557 0.8557
0.4672 8.99 562 0.4372 0.8568 0.8575 0.8568 0.8550
0.4211 10.0 625 0.4428 0.8523 0.8513 0.8523 0.8505
0.4228 10.99 687 0.4762 0.8433 0.8459 0.8433 0.8435
0.3966 12.0 750 0.4943 0.8410 0.8434 0.8410 0.8404
0.383 12.99 812 0.4885 0.8478 0.8503 0.8478 0.8463
0.3899 14.0 875 0.5021 0.8472 0.8494 0.8472 0.8474
0.3364 14.99 937 0.5107 0.8495 0.8488 0.8495 0.8486
0.331 16.0 1000 0.5219 0.8484 0.8460 0.8484 0.8454
0.288 16.99 1062 0.5696 0.8422 0.8429 0.8422 0.8410
0.2867 18.0 1125 0.5529 0.8484 0.8474 0.8484 0.8473
0.2889 18.99 1187 0.5613 0.8529 0.8522 0.8529 0.8520
0.2809 20.0 1250 0.6093 0.8433 0.8378 0.8433 0.8391
0.2684 20.99 1312 0.6096 0.8444 0.8409 0.8444 0.8419
0.2809 22.0 1375 0.6100 0.8455 0.8453 0.8455 0.8445
0.2661 22.99 1437 0.6161 0.8354 0.8378 0.8354 0.8359
0.2435 24.0 1500 0.6540 0.8517 0.8512 0.8517 0.8512
0.2593 24.99 1562 0.6644 0.8472 0.8462 0.8472 0.8456
0.2343 26.0 1625 0.6655 0.8467 0.8441 0.8467 0.8449
0.2281 26.99 1687 0.6759 0.8450 0.8438 0.8450 0.8440
0.2334 28.0 1750 0.6836 0.8472 0.8445 0.8472 0.8451
0.2129 28.99 1812 0.6731 0.8489 0.8466 0.8489 0.8471
0.2252 29.76 1860 0.6773 0.8467 0.8440 0.8467 0.8449

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1