metadata
license: wtfpl
tags:
- vision
- image-segmentation
widget:
- src: >-
https://images.unsplash.com/photo-1643310325061-2beef64926a5?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8Nnx8cmFjb29uc3xlbnwwfHwwfHw%3D&w=1000&q=80
example_title: Person
- src: >-
https://freerangestock.com/sample/139043/young-man-standing-and-leaning-on-car.jpg
example_title: Person
Segformer B2 fine-tuned for clothes segmentation
SegFormer model fine-tuned on ATR dataset for clothes segmentation
from transformers import AutoFeatureExtractor, SegformerForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn
extractor = AutoFeatureExtractor.from_pretrained("mattmdjaga/segformer_b2_clothes")
model = SegformerForSemanticSegmentation.from_pretrained("mattmdjaga/segformer_b2_clothes")
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
image = Image.open(requests.get(url, stream=True).raw)
inputs = extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)