Edit model card

NeuralDaredevil-8B-abliterated

image/jpeg

This is a DPO fine-tune of mlabonne/Daredevil-8-abliterated, trained on one epoch of mlabonne/orpo-dpo-mix-40k. The DPO fine-tuning successfully recovers the performance loss due to the abliteration process, making it an excellent uncensored model.

πŸ”Ž Applications

NeuralDaredevil-8B-abliterated performs better than the Instruct model on my tests.

You can use it for any application that doesn't require alignment, like role-playing. Tested on LM Studio using the "Llama 3" and "Llama 3 v2" presets.

⚑ Quantization

Thanks to QuantFactory, ZeroWw, Zoyd, solidrust, and tarruda for providing these quants.

πŸ† Evaluation

Open LLM Leaderboard

NeuralDaredevil-8B is the best-performing uncensored 8B model on the Open LLM Leaderboard (MMLU score).

image/png

Nous

Evaluation performed using LLM AutoEval. See the entire leaderboard here.

Model Average AGIEval GPT4All TruthfulQA Bigbench
mlabonne/NeuralDaredevil-8B-abliterated πŸ“„ 55.87 43.73 73.6 59.36 46.8
mlabonne/Daredevil-8B πŸ“„ 55.87 44.13 73.52 59.05 46.77
mlabonne/Daredevil-8B-abliterated πŸ“„ 55.06 43.29 73.33 57.47 46.17
NousResearch/Hermes-2-Theta-Llama-3-8B πŸ“„ 54.28 43.9 72.62 56.36 44.23
openchat/openchat-3.6-8b-20240522 πŸ“„ 53.49 44.03 73.67 49.78 46.48
meta-llama/Meta-Llama-3-8B-Instruct πŸ“„ 51.34 41.22 69.86 51.65 42.64
meta-llama/Meta-Llama-3-8B πŸ“„ 45.42 31.1 69.95 43.91 36.7

🌳 Model family tree

image/png

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Daredevil-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
13
GGUF
Model size
8.03B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model's library. Check the docs .

Dataset used to train mav23/NeuralDaredevil-8B-abliterated-GGUF

Evaluation results