💨📱 Vikhr-Llama-3.2-1B-instruct
RU
Инструктивная модель на основе Llama-3.2-1B-Instruct, обученная на русскоязычном датасете GrandMaster-PRO-MAX. В 5 раз эффективнее базовой модели, и идеально подходит для запуска на слабых или мобильных устройствах.
EN
Instructive model based on Llama-3.2-1B-Instruct, trained on the Russian-language dataset GrandMaster-PRO-MAX. It is 5 times more efficient than the base model, making it perfect for deployment on low-power or mobile devices.
GGUF
Особенности:
- 📚 Основа / Base: Llama-3.2-1B-Instruct
- 🇷🇺 Специализация / Specialization: RU
- 💾 Датасет / Dataset: GrandMaster-PRO-MAX
Попробовать / Try now:
Описание:
RU
Vikhr-Llama-3.2-1B-instruct — это компактная языковая модель, обученная на датасете GrandMaster-PRO-MAX, специально доученная для обработки русского языка. Эффективность модели в 5 раз превышает базовую модель, а её размер не превышает 3GB, что делает её отличным выбором для запуска на слабых и мобильных устройствах.
EN
Vikhr-Llama-3.2-1B-instruct is a compact language model trained on the GrandMaster-PRO-MAX dataset, specifically designed for processing the Russian language. Its efficiency is 5 times higher than the base model, and its size does not exceed 3GB, making it an excellent choice for deployment on low-power and mobile devices.
Обучение / Train:
RU
Для создания Vikhr-Llama-3.2-1B-instruct использовался метод SFT (Supervised Fine-Tuning). Мы обучили модель на синтетическом датасете Vikhrmodels/GrandMaster-PRO-MAX (150k инструкций) с поддержкой CoT (Chain-Of-Thought), используя промпты для GPT-4-turbo.
Скрипт для запуска SFT можно найти в нашей библиотеке на GitHub: effective_llm_alignment.
EN
To create Vikhr-Llama-3.2-1B-instruct, the SFT (Supervised Fine-Tuning) method was used. We trained the model on a synthetic dataset Vikhrmodels/GrandMaster-PRO-MAX (150k instructions) with support for CoT (Chain-Of-Thought), utilizing prompts for GPT-4-turbo.
The script for running SFT can be found in our GitHub repository: effective_llm_alignment.
Пример кода для запуска / Sample code to run:
Рекомендуемая температура для генерации: 0.3 / Recommended generation temperature: 0.3.
from transformers import AutoModelForCausalLM, AutoTokenizer
# Загрузка модели и токенизатора
model_name = "Vikhrmodels/Vikhr-Llama-3.2-1B-instruct"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Подготовка входного текста
input_text = "Напиши очень краткую рецензию о книге гарри поттер."
# Токенизация и генерация текста
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output = model.generate(
input_ids,
max_length=1512,
temperature=0.3,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
)
# Декодирование и вывод результата
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
print(generated_text)
Ответ модели / Model response:
Краткая рецензия на книгу "Гарри Поттер"
"Гарри Поттер" — это серия книг, написанная Дж. К. Роулинг, которая стала культовой в мире детских литературы. Книги рассказывают о жизни и приключениях молодого ученика по имени Гарри Поттер, который стал знаменитым по своей способности к магии.
Основные моменты:
Введение в мир Гарри Поттера: Книги начинаются с описания Гарри, его семьи и школы, где он изучает магию. Гарри — необычный ученик, который не имеет магических способностей, но обладает уникальным умом и способностью к решению проблем.
Социальные и политические аспекты: В книгах рассматриваются социальные и политические аспекты, такие как правительство, магические общества, и их взаимодействие.
Магические приключения: Гарри и его друзья, включая Рон и Хэл, сталкиваются с множеством магических угроз, включая злодеев, такие как Волшебный Войнук и Сатан.
Развитие персонажей: В книгах развиваются персонажи, их мотивации и отношения с другими персонажами.
Философские и моральные вопросы: Книги затрагивают темы, такие как вера, доброта, справедливость и моральные дилеммы.
Заключение:
"Гарри Поттер" — это не только история о молодом ученике, но и глубокое исследование человеческого опыта, социальных норм и моральных дилемм. Книги привлекают читателей своими захватывающими сюжетами, яркими персонажами и глубокими философскими размышлениями. Они являются не только увлекательным приключением, но и важным источником вдохновения для многих людей.
Метрики на ru_arena_general / Metrics on ru_arena_general
Model | Score | 95% CI | Avg Tokens | Std Tokens | LC Score |
---|---|---|---|---|---|
kolibri-vikhr-mistral-0427 | 22.41 | +1.6 / -1.6 | 489.89 | 566.29 | 46.04 |
storm-7b | 20.62 | +2.0 / -1.6 | 419.32 | 190.85 | 45.78 |
neural-chat-7b-v3-3 | 19.04 | +2.0 / -1.7 | 927.21 | 1211.62 | 45.56 |
Vikhrmodels-Vikhr-Llama-3.2-1B-instruct | 19.04 | +1.3 / -1.6 | 958.63 | 1297.33 | 45.56 |
gigachat_lite | 17.2 | +1.4 / -1.4 | 276.81 | 329.66 | 45.29 |
Vikhrmodels-vikhr-qwen-1.5b-it | 13.19 | +1.4 / -1.6 | 2495.38 | 741.45 | 44.72 |
meta-llama-Llama-3.2-1B-Instruct | 4.04 | +0.8 / -0.6 | 1240.53 | 1783.08 | 43.42 |
Авторы / Authors
- Sergei Bratchikov, NLP Wanderer, Vikhr Team
- Nikolay Kompanets, LakoMoor, Vikhr Team
- Konstantin Korolev, Vikhr Team
- Aleksandr Nikolich, Vikhr Team
@article{nikolich2024vikhr,
title={Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian},
author={Aleksandr Nikolich and Konstantin Korolev and Sergey Bratchikov and Nikolay Kompanets and Artem Shelmanov},
journal={arXiv preprint arXiv:2405.13929},
year={2024},
url={https://arxiv.org/pdf/2405.13929}
}
- Downloads last month
- 195
Model tree for mav23/Vikhr-Llama-3.2-1B-Instruct-GGUF
Base model
meta-llama/Llama-3.2-1B-Instruct