mav23's picture
Upload folder using huggingface_hub
e0ffe6d verified
|
raw
history blame
5.36 kB
---
license: llama3
tags:
- function-calling
---
# FireFunction V2: Fireworks Function Calling Model
[**Try on Fireworks**](https://fireworks.ai/models/fireworks/firefunction-v2) | [**API Docs**](https://readme.fireworks.ai/docs/function-calling) | [**Demo App**](https://functional-chat.vercel.app/) | [**Discord**](https://discord.gg/mMqQxvFD9A)
<img src="https://cdn-uploads.huggingface.co/production/uploads/64b6f3a72f5a966b9722de88/nJNtxLzWswBDKK1iOZblb.png" alt="firefunction" width="400"/>
FireFunction is a state-of-the-art function calling model with a commercially viable license. View detailed info in our [announcement blog](https://fireworks.ai/blog/firefunction-v2-launch-post). Key info and highlights:
**Comparison with other models:**
- Competitive with GPT-4o at function-calling, scoring 0.81 vs 0.80 on a medley of public evaluations
- Trained on Llama 3 and retains Llama 3’s conversation and instruction-following capabilities, scoring 0.84 vs Llama 3’s 0.89 on MT bench
- Significant quality improvements over FireFunction v1 across the broad range of metrics
**General info:**
🐾 Successor of the [FireFunction](https://fireworks.ai/models/fireworks/firefunction-v1) model
πŸ”† Support of parallel function calling (unlike FireFunction v1) and good instruction following
πŸ’‘ Hosted on the [Fireworks](https://fireworks.ai/models/fireworks/firefunction-v2) platform at < 10% of the cost of GPT 4o and 2x the speed
## Intended Use and Limitations
### Supported usecases
The model was tuned to perfom well on a range of usecases including:
* general instruction following
* multi-turn chat mixing vanilla messages with function calls
* single- and parallel function calling
* up to 20 function specs supported at once
* structured information extraction
The model has an 8k context window, like Llama 3
### Out-of-Scope Use
The model was not optimized for the following use cases:
* 100+ function specs
* nested function calling
## Metrics
| Benchmark | Firefunction v1 | Firefunction v2 | Llama 3 70b Instruct | Gpt-4o |
|:-----------------------------------|:----------------|:----------------|:---------------------|:-------|
| Gorilla simple | 0.91 | 0.94 | 0.925 | 0.88 |
| Gorilla multiple_function | 0.92 | 0.91 | 0.86 | 0.91 |
| Gorilla parallel_function | 0 | 0.9 | 0.86 | 0.89 |
| Gorilla parallel_multiple_function | 0 | 0.8 | 0.615 | 0.72 |
| Nexus parallel | 0.38 | 0.53 | 0.3 | 0.47 |
| Mtbench | 0.73 | 0.84 | 0.89 | 0.93 |
| Average | 0.49 | 0.82 | 0.74 | 0.8 |
## Example Usage
See [documentation](https://readme.fireworks.ai/docs/function-calling) for more detail.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
from datetime import datetime
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("fireworks-ai/firefunction-v2", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("fireworks-ai/firefunction-v2")
function_spec = [
{
"name": "get_stock_price",
"description": "Get the current stock price",
"parameters": {
"type": "object",
"properties": {
"symbol": {
"type": "string",
"description": "The stock symbol, e.g. AAPL, GOOG"
}
},
"required": [
"symbol"
]
}
},
{
"name": "check_word_anagram",
"description": "Check if two words are anagrams of each other",
"parameters": {
"type": "object",
"properties": {
"word1": {
"type": "string",
"description": "The first word"
},
"word2": {
"type": "string",
"description": "The second word"
}
},
"required": [
"word1",
"word2"
]
}
}
]
functions = json.dumps(function_spec, indent=4)
messages = [
{'role': 'system', 'content': 'You are a helpful assistant with access to functions. Use them if required.'},
{'role': 'user', 'content': 'Hi, can you tell me the current stock price of google and netflix?'}
]
now = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
model_inputs = tokenizer.apply_chat_template(messages, functions=functions, datetime=now, return_tensors="pt").to(model.device)
generated_ids = model.generate(model_inputs, max_new_tokens=128)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```
## Resources
* [Fireworks discord with function calling channel](https://discord.gg/mMqQxvFD9A)
* [Documentation](https://readme.fireworks.ai/docs/function-calling)
* [Demo app](https://functional-chat.vercel.app/)
* [Try in Fireworks prompt playground UI](https://fireworks.ai/models/fireworks/firefunction-v2)