maxseats's picture
Update README.md
786d3cf verified
|
raw
history blame
1.88 kB
---
language: ko
tags:
- whisper
- speech-recognition
datasets:
- maxseats/aihub-464-preprocessed-680GB-set-0
metrics:
- cer
---
# Model Name : SungBeom/whisper-small-ko
# Description
- νŒŒμΈνŠœλ‹ 데이터셋 : maxseats/aihub-464-preprocessed-680GB-set-0
- AI hub의 μ£Όμš” μ˜μ—­λ³„ 회의 μŒμ„± 데이터셋 680GB 쀑 첫번째 데이터(10GB)λ₯Ό νŒŒμΈνŠœλ‹ν•œ λͺ¨λΈμž…λ‹ˆλ‹€.
- 데이터셋 링크 : https://huggingface.co/datasets/maxseats/aihub-464-preprocessed-680GB-set-0
# νŒŒλΌλ―Έν„°
```
model_name = "SungBeom/whisper-small-ko" # λŒ€μ•ˆ : "SungBeom/whisper-small-ko"
dataset_name = "maxseats/aihub-464-preprocessed-680GB-set-0" # 뢈러올 데이터셋(ν—ˆκΉ…νŽ˜μ΄μŠ€ κΈ°μ€€)
CACHE_DIR = '/mnt/a/maxseats/.finetuning_cache' # μΊμ‹œ 디렉토리 지정
is_test = False # True: μ†ŒλŸ‰μ˜ μƒ˜ν”Œ λ°μ΄ν„°λ‘œ ν…ŒμŠ€νŠΈ, False: μ‹€μ œ νŒŒμΈνŠœλ‹
token = "hf_" # ν—ˆκΉ…νŽ˜μ΄μŠ€ 토큰 μž…λ ₯
training_args = Seq2SeqTrainingArguments(
output_dir=model_dir, # μ›ν•˜λŠ” 리포지토리 이름을 μž…λ ₯ν•œλ‹€.
per_device_train_batch_size=16,
gradient_accumulation_steps=2, # 배치 크기가 2λ°° κ°μ†Œν•  λ•Œλ§ˆλ‹€ 2λ°°μ”© 증가
learning_rate=1e-5,
warmup_steps=1000,
# max_steps=2, # epoch λŒ€μ‹  μ„€μ •
num_train_epochs=1, # epoch 수 μ„€μ • / max_steps와 이것 쀑 ν•˜λ‚˜λ§Œ μ„€μ •
gradient_checkpointing=True,
fp16=True,
evaluation_strategy="steps",
per_device_eval_batch_size=16,
predict_with_generate=True,
generation_max_length=225,
save_steps=1000,
eval_steps=1000,
logging_steps=25,
report_to=["tensorboard"],
load_best_model_at_end=True,
metric_for_best_model="cer", # ν•œκ΅­μ–΄μ˜ 경우 'wer'λ³΄λ‹€λŠ” 'cer'이 더 적합할 것
greater_is_better=False,
push_to_hub=True,
save_total_limit=5, # μ΅œλŒ€ μ €μž₯ν•  λͺ¨λΈ 수 지정
)
```