Text Generation
Transformers
Safetensors
mistral
Merge
mergekit
lazymergekit
DiscoResearch/DiscoLM_German_7b_v1
DRXD1000/Phoenix
LeoLM/leo-mistral-hessianai-7b-chat
openaccess-ai-collective/DPOpenHermes-7B-v2
fblgit/una-cybertron-7b-v2-bf16
mlabonne/NeuralHermes-2.5-Mistral-7B
text-generation-inference
Inference Endpoints
metadata
tags:
- merge
- mergekit
- lazymergekit
- DiscoResearch/DiscoLM_German_7b_v1
- DRXD1000/Phoenix
- LeoLM/leo-mistral-hessianai-7b-chat
- openaccess-ai-collective/DPOpenHermes-7B-v2
- fblgit/una-cybertron-7b-v2-bf16
- mlabonne/NeuralHermes-2.5-Mistral-7B
base_model:
- DiscoResearch/DiscoLM_German_7b_v1
- DRXD1000/Phoenix
- LeoLM/leo-mistral-hessianai-7b-chat
- openaccess-ai-collective/DPOpenHermes-7B-v2
- fblgit/una-cybertron-7b-v2-bf16
- mlabonne/NeuralHermes-2.5-Mistral-7B
GermanDare-7B
GermanDare-7B is a merge of the following models using LazyMergekit:
- DiscoResearch/DiscoLM_German_7b_v1
- DRXD1000/Phoenix
- LeoLM/leo-mistral-hessianai-7b-chat
- openaccess-ai-collective/DPOpenHermes-7B-v2
- fblgit/una-cybertron-7b-v2-bf16
- mlabonne/NeuralHermes-2.5-Mistral-7B
🧩 Configuration
models:
- model: mistralai/Mistral-7B-v0.1
# No parameters necessary for base model
- model: DiscoResearch/DiscoLM_German_7b_v1
parameters:
density: 0.6
weight: 0.2
- model: DRXD1000/Phoenix
parameters:
density: 0.6
weight: 0.2
- model: LeoLM/leo-mistral-hessianai-7b-chat
parameters:
density: 0.6
weight: 0.1
- model: openaccess-ai-collective/DPOpenHermes-7B-v2
parameters:
density: 0.6
weight: 0.2
- model: fblgit/una-cybertron-7b-v2-bf16
parameters:
density: 0.6
weight: 0.2
- model: mlabonne/NeuralHermes-2.5-Mistral-7B
parameters:
density: 0.6
weight: 0.1
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mayflowergmbh/GermanDare-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])