metadata
license: apache-2.0
Synatra-7B-v0.3-dpo๐ง
Support Me
์๋ํธ๋ผ๋ ๊ฐ์ธ ํ๋ก์ ํธ๋ก, 1์ธ์ ์์์ผ๋ก ๊ฐ๋ฐ๋๊ณ ์์ต๋๋ค. ๋ชจ๋ธ์ด ๋ง์์ ๋์ จ๋ค๋ฉด ์ฝ๊ฐ์ ์ฐ๊ตฌ๋น ์ง์์ ์ด๋จ๊น์?
Wanna be a sponser? (Please) Contact me on Telegram AlzarTakkarsen
Model Details
Base Model
mistralai/Mistral-7B-Instruct-v0.1
Trained On
A100 80GB * 1
Instruction format
It follows ChatML format and Alpaca(No-Input) format.
Model Benchmark
KOBEST_BOOLQ, SENTINEG, WIC - ZERO_SHOT
EleutherAI/lm-evaluation-harness๋ฅผ ์ฌ์ฉํ์ฌ BoolQ, SentiNeg, Wic์ ์ธก์ ํ์ต๋๋ค.
Model | COPA | HellaSwag | BoolQ | SentiNeg |
---|---|---|---|---|
EleutherAI/polyglot-ko-12.8b | 0.7937 | 0.5954 | 0.4818 | 0.9117 |
Synatra-7B-v0.3-base | 0.6344 | 0.5140 | 0.5226 | NaN |
Synatra-7B-v0.3-dpo | 0.6380 | 0.4780 | 0.8058 | 0.8942 |
Ko-LLM-Leaderboard
On Benchmarking...
Implementation Code
Since, chat_template already contains insturction format above. You can use the code below.
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("maywell/Synatra-7B-v0.3-dpo")
tokenizer = AutoTokenizer.from_pretrained("maywell/Synatra-7B-v0.3-dpo")
messages = [
{"role": "user", "content": "๋ฐ๋๋๋ ์๋ ํ์์์ด์ผ?"},
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 53.14 |
ARC (25-shot) | 62.8 |
HellaSwag (10-shot) | 82.58 |
MMLU (5-shot) | 61.46 |
TruthfulQA (0-shot) | 56.46 |
Winogrande (5-shot) | 76.24 |
GSM8K (5-shot) | 23.73 |
DROP (3-shot) | 8.68 |