metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny-dv
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train
args: en-US
metrics:
- name: Wer
type: wer
value: 57.438016528925615
whisper-tiny-dv
This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 1.4917
- Wer Ortho: 58.5441
- Wer: 57.4380
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.0013 | 17.86 | 500 | 1.0739 | 56.0148 | 55.3719 |
0.0003 | 35.71 | 1000 | 1.1575 | 54.3492 | 53.6009 |
0.0002 | 53.57 | 1500 | 1.2226 | 55.3979 | 54.7226 |
0.0001 | 71.43 | 2000 | 1.2711 | 56.6934 | 55.4900 |
0.0001 | 89.29 | 2500 | 1.3089 | 56.1999 | 55.1948 |
0.0 | 107.14 | 3000 | 1.3487 | 55.4596 | 54.4864 |
0.0 | 125.0 | 3500 | 1.3865 | 56.4466 | 55.5490 |
0.0 | 142.86 | 4000 | 1.4259 | 58.9759 | 57.6741 |
0.0 | 160.71 | 4500 | 1.4563 | 58.2973 | 57.0838 |
0.0 | 178.57 | 5000 | 1.4917 | 58.5441 | 57.4380 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3