mdraw's picture
Add more info to readme
24e081e
|
raw
history blame
1.46 kB
# German sentiment BERT finetuned on news data
Sentiment analysis model based on https://huggingface.co/oliverguhr/german-sentiment-bert, with additional training on German news texts about migration.
This model is part of the project https://github.com/text-analytics-20/news-sentiment-development, which explores sentiment development in German news articles about migration between 2007 and 2019.
Code for inference (predicting sentiment polarity) on raw text can be found at https://github.com/text-analytics-20/news-sentiment-development/blob/main/sentiment_analysis/bert.py
If you are not interested in polarity but just want to predict discrete class labels (0: positive, 1: negative, 2: neutral), you can also use the model with Oliver Guhr's `germansentiment` package as follows:
First install the package from PyPI:
```bash
pip install germansentiment
```
Then you can use the model in Python:
```python
from germansentiment import SentimentModel
model = SentimentModel('mdraw/german-news-sentiment-bert')
# Examples from our validation dataset
texts = [
'[...], schwärmt der parteilose Vizebürgermeister und Historiker Christian Matzka von der "tollen Helferszene".',
'Flüchtlingsheim 11.05 Uhr: Massenschlägerei',
'Rotterdam habe einen Migrantenanteil von mehr als 50 Prozent.',
]
result = model.predict_sentiment(texts)
print(result)
```
The code above will print:
```python
['positive', 'negative', 'neutral']
```