mehedihasanbijoy's picture
Upload tokenizer
1bd3278 verified
|
raw
history blame
1.88 kB
metadata
base_model: facebook/w2v-bert-2.0
datasets:
  - common_voice_16_0
library_name: transformers
license: mit
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: w2v-bert-2.0-mongolian-colab-CV16.0
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: mn
          split: test
          args: mn
        metrics:
          - type: wer
            value: 0.5182727865999565
            name: Wer

w2v-bert-2.0-mongolian-colab-CV16.0

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6866
  • Wer: 0.5183

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.8436 5.2174 300 0.6866 0.5183

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1