mekjr1's picture
update model card README.md
b6fa37c
|
raw
history blame
8.5 kB
metadata
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-en-es
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: opus-mt-en-es-finetuned-es-to-pbb-v0.1
    results: []

opus-mt-en-es-finetuned-es-to-pbb-v0.1

This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-es on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9576
  • Bleu: 5.2917
  • Gen Len: 76.1652

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 194 1.5013 4.5843 75.6652
No log 2.0 388 1.5089 4.6332 74.3943
0.6987 3.0 582 1.5167 4.6474 76.8423
0.6987 4.0 776 1.5170 4.8581 75.5565
0.6987 5.0 970 1.5234 4.7496 75.4673
0.6711 6.0 1164 1.5304 4.7982 74.4077
0.6711 7.0 1358 1.5285 4.8994 75.1533
0.6426 8.0 1552 1.5354 4.7699 74.7217
0.6426 9.0 1746 1.5481 5.0032 75.0938
0.6426 10.0 1940 1.5543 4.6445 75.4301
0.616 11.0 2134 1.5606 5.023 75.744
0.616 12.0 2328 1.5647 4.9297 75.2812
0.5893 13.0 2522 1.5650 5.082 76.2872
0.5893 14.0 2716 1.5794 4.9381 76.0521
0.5893 15.0 2910 1.5852 4.4323 74.2783
0.5614 16.0 3104 1.5895 4.8884 74.1042
0.5614 17.0 3298 1.5993 4.73 76.7842
0.5614 18.0 3492 1.6051 4.8878 74.1235
0.5382 19.0 3686 1.6114 4.7385 75.4196
0.5382 20.0 3880 1.6214 5.2447 75.7202
0.5134 21.0 4074 1.6299 5.2439 76.8512
0.5134 22.0 4268 1.6349 4.9998 74.7768
0.5134 23.0 4462 1.6441 5.1979 74.4405
0.4938 24.0 4656 1.6538 4.9686 74.8661
0.4938 25.0 4850 1.6586 5.2127 75.1042
0.4737 26.0 5044 1.6603 5.1942 75.1562
0.4737 27.0 5238 1.6760 5.218 75.4524
0.4737 28.0 5432 1.6764 4.9681 74.9092
0.4536 29.0 5626 1.6822 4.8603 75.442
0.4536 30.0 5820 1.6905 5.1553 75.9107
0.4358 31.0 6014 1.7020 4.9345 75.0193
0.4358 32.0 6208 1.7056 5.2455 75.3586
0.4358 33.0 6402 1.7083 5.083 76.5923
0.4184 34.0 6596 1.7148 5.0844 75.9792
0.4184 35.0 6790 1.7255 5.6166 76.0952
0.4184 36.0 6984 1.7198 5.1109 74.119
0.4041 37.0 7178 1.7409 5.1895 75.317
0.4041 38.0 7372 1.7467 5.1409 76.192
0.3871 39.0 7566 1.7457 5.2776 76.1384
0.3871 40.0 7760 1.7566 5.1878 76.5744
0.3871 41.0 7954 1.7648 5.1553 76.7202
0.3715 42.0 8148 1.7644 5.3827 75.1235
0.3715 43.0 8342 1.7789 4.9848 77.0938
0.3588 44.0 8536 1.7774 5.3408 76.4807
0.3588 45.0 8730 1.7877 5.2917 75.7098
0.3588 46.0 8924 1.7890 5.3424 76.5149
0.3461 47.0 9118 1.7962 5.2892 75.4048
0.3461 48.0 9312 1.8005 5.1806 76.1235
0.3361 49.0 9506 1.8067 5.1191 76.2098
0.3361 50.0 9700 1.8131 5.4998 75.3958
0.3361 51.0 9894 1.8203 5.1396 76.4926
0.323 52.0 10088 1.8254 5.3301 76.128
0.323 53.0 10282 1.8288 5.1309 75.4732
0.323 54.0 10476 1.8355 5.067 75.3929
0.3145 55.0 10670 1.8387 5.0625 75.4554
0.3145 56.0 10864 1.8485 5.0427 76.6399
0.3045 57.0 11058 1.8515 5.077 75.5685
0.3045 58.0 11252 1.8548 5.2864 75.5491
0.3045 59.0 11446 1.8647 5.1937 75.625
0.2954 60.0 11640 1.8638 5.2397 76.0089
0.2954 61.0 11834 1.8738 5.3512 75.9628
0.2867 62.0 12028 1.8767 5.3713 76.4241
0.2867 63.0 12222 1.8765 5.5181 76.7738
0.2867 64.0 12416 1.8841 5.0943 76.2932
0.2783 65.0 12610 1.8821 4.9868 75.7009
0.2783 66.0 12804 1.8915 5.4204 75.4688
0.2783 67.0 12998 1.8920 5.3434 75.5952
0.2738 68.0 13192 1.8941 5.2259 75.5476
0.2738 69.0 13386 1.8997 5.4174 77.5372
0.2661 70.0 13580 1.9044 5.2945 76.0312
0.2661 71.0 13774 1.9042 5.3489 75.7798
0.2661 72.0 13968 1.9087 5.1653 76.2366
0.2613 73.0 14162 1.9144 5.16 75.0402
0.2613 74.0 14356 1.9124 5.3944 74.8854
0.2548 75.0 14550 1.9194 4.9676 76.2827
0.2548 76.0 14744 1.9208 5.3381 75.6548
0.2548 77.0 14938 1.9228 5.3926 76.2024
0.2502 78.0 15132 1.9288 5.3713 76.0179
0.2502 79.0 15326 1.9292 5.3918 75.6786
0.2456 80.0 15520 1.9312 5.2898 76.0179
0.2456 81.0 15714 1.9323 5.1955 76.3051
0.2456 82.0 15908 1.9350 5.1054 76.0119
0.242 83.0 16102 1.9393 5.2818 75.0461
0.242 84.0 16296 1.9402 5.3891 76.0476
0.242 85.0 16490 1.9410 5.0327 76.4717
0.2385 86.0 16684 1.9445 5.2409 77.2262
0.2385 87.0 16878 1.9425 5.4225 75.7827
0.2341 88.0 17072 1.9485 5.2054 76.7262
0.2341 89.0 17266 1.9484 5.1336 75.5818
0.2341 90.0 17460 1.9518 5.1384 76.0476
0.2327 91.0 17654 1.9516 5.2578 75.8259
0.2327 92.0 17848 1.9534 5.4452 76.0655
0.2297 93.0 18042 1.9525 5.3555 76.5342
0.2297 94.0 18236 1.9533 5.3192 76.2619
0.2297 95.0 18430 1.9551 5.419 75.8988
0.2271 96.0 18624 1.9560 5.19 76.8036
0.2271 97.0 18818 1.9562 5.1571 76.186
0.226 98.0 19012 1.9570 5.1179 76.2812
0.226 99.0 19206 1.9575 5.2191 76.0699
0.226 100.0 19400 1.9576 5.2917 76.1652

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3