license: mit
language:
- sw
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: v1
results:
- task:
type: Offensive words classifier
name: Text Classification
metrics:
- type: f1
value: 0.9272349272349272
name: F1 Score
verified: false
- type: precision
value: 0.9550321199143469
name: Precision
verified: false
- type: recall
value: 0.901010101010101
name: Recall
verified: false
- type: accuracy
value: 0.9292214357937311
name: Accuracy
verified: false
datasets:
- metabloit/offensive-swahili-text
swahBERT
This model was fine tuned using the dataset listed below. It achieves the following results on the evaluation set:
- Loss: 0.4982
- Accuracy: 0.9292
- Precision: 0.9550
- Recall: 0.9010
- F1: 0.9272
Model description
This is a fine tuned swahBERT model. You can get the original model from here
Training and evaluation data
The model was fine tuned using this dataset
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 310 | 0.6506 | 0.9282 | 0.9417 | 0.9131 | 0.9272 |
0.0189 | 2.0 | 620 | 0.4982 | 0.9292 | 0.9550 | 0.9010 | 0.9272 |
0.0189 | 3.0 | 930 | 0.5387 | 0.9323 | 0.9693 | 0.8929 | 0.9295 |
0.0314 | 4.0 | 1240 | 0.6365 | 0.9221 | 0.9524 | 0.8889 | 0.9195 |
0.0106 | 5.0 | 1550 | 0.6687 | 0.9282 | 0.9473 | 0.9071 | 0.9267 |
0.0106 | 6.0 | 1860 | 0.6671 | 0.9282 | 0.9454 | 0.9091 | 0.9269 |
0.0016 | 7.0 | 2170 | 0.6908 | 0.9242 | 0.9468 | 0.8990 | 0.9223 |
0.0016 | 8.0 | 2480 | 0.6832 | 0.9272 | 0.9471 | 0.9051 | 0.9256 |
Framework versions
- Transformers 4.33.1
- Pytorch 2.0.1+cpu
- Datasets 2.14.5
- Tokenizers 0.13.3
References
@inproceedings{martin-etal-2022-swahbert, title = "{S}wah{BERT}: Language Model of {S}wahili", author = "Martin, Gati and Mswahili, Medard Edmund and Jeong, Young-Seob and Woo, Jiyoung", booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.naacl-main.23", pages = "303--313" }