Edit model card

t5-small-finetuned-booksum

This model is a fine-tuned version of t5-small on an booksum dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3115
  • Rouge1: 20.5085
  • Rouge2: 2.9908
  • Rougel: 13.8508
  • Rougelsum: 18.4822
  • Gen Len: 228.1577

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
3.7585 1.0 600 3.3969 17.6639 2.5697 12.3838 15.9802 307.0236
3.5518 2.0 1200 3.3526 20.0469 2.9053 13.6055 18.0492 248.2581
3.5108 3.0 1800 3.3318 20.0243 2.8879 13.5558 17.9889 245.3416
3.4798 4.0 2400 3.3202 20.1501 2.9346 13.6819 18.1977 232.3801
3.4542 5.0 3000 3.3134 20.6061 3.0311 13.9844 18.5832 217.8302
3.453 6.0 3600 3.3115 20.5085 2.9908 13.8508 18.4822 228.1577

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mgundik/t5-small-finetuned-booksum

Base model

google-t5/t5-small
Finetuned
(1529)
this model

Dataset used to train mgundik/t5-small-finetuned-booksum