mhasnanr's picture
End of training
20790d3
|
raw
history blame
2.89 kB
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.525

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2966
  • Accuracy: 0.525

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 40 1.4307 0.475
No log 2.0 80 1.3231 0.5125
No log 3.0 120 1.3044 0.5437
No log 4.0 160 1.3204 0.525
No log 5.0 200 1.2457 0.5875
No log 6.0 240 1.3604 0.5125
No log 7.0 280 1.2296 0.5813
No log 8.0 320 1.3598 0.525
No log 9.0 360 1.3343 0.5188
No log 10.0 400 1.4003 0.5625
No log 11.0 440 1.3580 0.5563
No log 12.0 480 1.3214 0.5687
0.4908 13.0 520 1.3713 0.5312
0.4908 14.0 560 1.3820 0.55
0.4908 15.0 600 1.3384 0.5813
0.4908 16.0 640 1.4905 0.5375
0.4908 17.0 680 1.3985 0.5687
0.4908 18.0 720 1.4733 0.5312
0.4908 19.0 760 1.3403 0.5813
0.4908 20.0 800 1.3991 0.5563

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3