|
--- |
|
datasets: |
|
- yuvalkirstain/pickapic_v2 |
|
language: |
|
- en |
|
library_name: diffusers |
|
pipeline_tag: text-to-image |
|
license: openrail++ |
|
--- |
|
# Diffusion Model Alignment Using Direct Preference Optimization |
|
|
|
![row01](01.gif) |
|
|
|
Direct Preference Optimization (DPO) for text-to-image diffusion models is a method to align diffusion models to text human preferences by directly optimizing on human comparison data. Please check our paper at [Diffusion Model Alignment Using Direct Preference Optimization](https://arxiv.org/abs/2311.12908). |
|
|
|
This model is fine-tuned from [stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) on offline human preference data [pickapic_v2](https://huggingface.co/datasets/yuvalkirstain/pickapic_v2). |
|
|
|
## Code |
|
The code is available [here](https://github.com/huggingface/diffusers/tree/main/examples/research_projects/diffusion_dpo). |
|
|
|
## SD1.5 |
|
We also have a model finedtuned from [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) available at [dpo-sd1.5-text2image-v1](https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1). |
|
|
|
## A quick example |
|
```python |
|
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel |
|
import torch |
|
|
|
# load pipeline |
|
model_id = "stabilityai/stable-diffusion-xl-base-1.0" |
|
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") |
|
|
|
# load finetuned model |
|
unet_id = "mhdang/dpo-sdxl-text2image-v1" |
|
unet = UNet2DConditionModel.from_pretrained(unet_id, subfolder="unet", torch_dtype=torch.float16) |
|
pipe.unet = unet |
|
pipe = pipe.to("cuda") |
|
|
|
prompt = "Two cats playing chess on a tree branch" |
|
image = pipe(prompt, guidance_scale=5).images[0].resize((512,512)) |
|
|
|
image.save("cats_playing_chess.png") |
|
``` |
|
|
|
More details coming soon. |