YOLOv5
Ultralytics YOLOv5 model in Pytorch.
Proof of concept for (TypoSquatting, Niche Squatting) security flaw on Hugging Face.
Model Description
How to use
from transformers import YolosFeatureExtractor, YolosForObjectDetection
from PIL import Image
import requests
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = YolosFeatureExtractor.from_pretrained('mhyatt000/yolov5')
model = YolosForObjectDetection.from_pretrained('mhyatt000/yolov5')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
# model predicts bounding boxes and corresponding COCO classes
logits = outputs.logits
bboxes = outputs.pred_boxes
Training Data
Training
Evaluation
Model was evaluated on COCO2017 dataset.
Model | size (pixels) | mAPval | Speed | params | FLOPS |
---|---|---|---|---|---|
YOLOv5s6 | 1280 | 43.3 | 4.3 | 12.7 | 17.4 |
YOLOv5m6 | 1280 | 50.5 | 8.4 | 35.9 | 52.4 |
YOLOv5l6 | 1280 | 53.4 | 12.3 | 77.2 | 117.7 |
YOLOv5x6 | 1280 | 54.4 | 22.4 | 141.8 | 222.9 |
Bibtex and citation info
@software{glenn_jocher_2022_6222936,
author = {Glenn Jocher and
Ayush Chaurasia and
Alex Stoken and
Jirka Borovec and
NanoCode012 and
Yonghye Kwon and
TaoXie and
Jiacong Fang and
imyhxy and
Kalen Michael and
Lorna and
Abhiram V and
Diego Montes and
Jebastin Nadar and
Laughing and
tkianai and
yxNONG and
Piotr Skalski and
Zhiqiang Wang and
Adam Hogan and
Cristi Fati and
Lorenzo Mammana and
AlexWang1900 and
Deep Patel and
Ding Yiwei and
Felix You and
Jan Hajek and
Laurentiu Diaconu and
Mai Thanh Minh},
title = {{ultralytics/yolov5: v6.1 - TensorRT, TensorFlow
Edge TPU and OpenVINO Export and Inference}},
month = feb,
year = 2022,
publisher = {Zenodo},
version = {v6.1},
doi = {10.5281/zenodo.6222936},
url = {https://doi.org/10.5281/zenodo.6222936}
}
- Downloads last month
- 0
Inference API (serverless) does not yet support stable-baselines3 models for this pipeline type.
Evaluation results
- mean_reward on seals/CartPole-v0self-reported500.00 +/- 0.00