# Fast-Inference with Ctranslate2
Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
quantized version of thenlper/gte-large
pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1
# from transformers import AutoTokenizer
model_name = "michaelfeil/ct2fast-gte-large"
model_name_orig="thenlper/gte-large"
from hf_hub_ctranslate2 import EncoderCT2fromHfHub
model = EncoderCT2fromHfHub(
# load in int8 on CUDA
model_name_or_path=model_name,
device="cuda",
compute_type="int8_float16"
)
outputs = model.generate(
text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
max_length=64,
) # perform downstream tasks on outputs
outputs["pooler_output"]
outputs["last_hidden_state"]
outputs["attention_mask"]
# alternative, use SentenceTransformer Mix-In
# for end-to-end Sentence embeddings generation
# (not pulling from this CT2fast-HF repo)
from hf_hub_ctranslate2 import CT2SentenceTransformer
model = CT2SentenceTransformer(
model_name_orig, compute_type="int8_float16", device="cuda"
)
embeddings = model.encode(
["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
batch_size=32,
convert_to_numpy=True,
normalize_embeddings=True,
)
print(embeddings.shape, embeddings)
scores = (embeddings @ embeddings.T) * 100
# Hint: you can also host this code via REST API and
# via github.com/michaelfeil/infinity
Checkpoint compatible to ctranslate2>=3.17.1 and hf-hub-ctranslate2>=2.12.0
compute_type=int8_float16
fordevice="cuda"
compute_type=int8
fordevice="cpu"
Converted on 2023-10-13 using
LLama-2 -> removed <pad> token.
Licence and other remarks:
This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
Original description
gte-large
General Text Embeddings (GTE) model. Towards General Text Embeddings with Multi-stage Contrastive Learning
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including GTE-large, GTE-base, and GTE-small. The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including information retrieval, semantic textual similarity, text reranking, etc.
Metrics
We compared the performance of the GTE models with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the MTEB leaderboard.
Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) |
---|---|---|---|---|---|---|---|---|---|---|---|
gte-large | 0.67 | 1024 | 512 | 63.13 | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 |
gte-base | 0.22 | 768 | 512 | 62.39 | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 |
e5-large-v2 | 1.34 | 1024 | 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 |
e5-base-v2 | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 |
gte-small | 0.07 | 384 | 512 | 61.36 | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 |
text-embedding-ada-002 | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 |
e5-small-v2 | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 |
sentence-t5-xxl | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 |
all-mpnet-base-v2 | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 |
sgpt-bloom-7b1-msmarco | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 |
all-MiniLM-L12-v2 | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 |
all-MiniLM-L6-v2 | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 |
contriever-base-msmarco | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 |
sentence-t5-base | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 |
Usage
Code example
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
"what is the capital of China?",
"how to implement quick sort in python?",
"Beijing",
"sorting algorithms"
]
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-large")
model = AutoModel.from_pretrained("thenlper/gte-large")
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# (Optionally) normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:1] @ embeddings[1:].T) * 100
print(scores.tolist())
Use with sentence-transformers:
from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim
sentences = ['That is a happy person', 'That is a very happy person']
model = SentenceTransformer('thenlper/gte-large')
embeddings = model.encode(sentences)
print(cos_sim(embeddings[0], embeddings[1]))
Limitation
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
Citation
If you find our paper or models helpful, please consider citing them as follows:
@misc{li2023general,
title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
year={2023},
eprint={2308.03281},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 19
Spaces using michaelfeil/ct2fast-gte-large 3
Evaluation results
- accuracy on MTEB AmazonCounterfactualClassification (en)test set self-reported72.627
- ap on MTEB AmazonCounterfactualClassification (en)test set self-reported34.469
- f1 on MTEB AmazonCounterfactualClassification (en)test set self-reported66.237
- accuracy on MTEB AmazonPolarityClassificationtest set self-reported92.518
- ap on MTEB AmazonPolarityClassificationtest set self-reported89.498
- f1 on MTEB AmazonPolarityClassificationtest set self-reported92.511
- accuracy on MTEB AmazonReviewsClassification (en)test set self-reported49.074
- f1 on MTEB AmazonReviewsClassification (en)test set self-reported48.448
- map_at_1 on MTEB ArguAnatest set self-reported32.077
- map_at_10 on MTEB ArguAnatest set self-reported48.153