michaelfeil commited on
Commit
8489125
1 Parent(s): edff6d4

Upload thenlper/gte-large ctranslate2 weights

Browse files
README.md ADDED
@@ -0,0 +1,2771 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - ctranslate2
4
+ - int8
5
+ - float16
6
+ - mteb
7
+ - sentence-similarity
8
+ - sentence-transformers
9
+ - Sentence Transformers
10
+ model-index:
11
+ - name: gte-large
12
+ results:
13
+ - task:
14
+ type: Classification
15
+ dataset:
16
+ type: mteb/amazon_counterfactual
17
+ name: MTEB AmazonCounterfactualClassification (en)
18
+ config: en
19
+ split: test
20
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
21
+ metrics:
22
+ - type: accuracy
23
+ value: 72.62686567164178
24
+ - type: ap
25
+ value: 34.46944126809772
26
+ - type: f1
27
+ value: 66.23684353950857
28
+ - task:
29
+ type: Classification
30
+ dataset:
31
+ type: mteb/amazon_polarity
32
+ name: MTEB AmazonPolarityClassification
33
+ config: default
34
+ split: test
35
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
36
+ metrics:
37
+ - type: accuracy
38
+ value: 92.51805
39
+ - type: ap
40
+ value: 89.49842783330848
41
+ - type: f1
42
+ value: 92.51112169431808
43
+ - task:
44
+ type: Classification
45
+ dataset:
46
+ type: mteb/amazon_reviews_multi
47
+ name: MTEB AmazonReviewsClassification (en)
48
+ config: en
49
+ split: test
50
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
51
+ metrics:
52
+ - type: accuracy
53
+ value: 49.074
54
+ - type: f1
55
+ value: 48.44785682572955
56
+ - task:
57
+ type: Retrieval
58
+ dataset:
59
+ type: arguana
60
+ name: MTEB ArguAna
61
+ config: default
62
+ split: test
63
+ revision: None
64
+ metrics:
65
+ - type: map_at_1
66
+ value: 32.077
67
+ - type: map_at_10
68
+ value: 48.153
69
+ - type: map_at_100
70
+ value: 48.963
71
+ - type: map_at_1000
72
+ value: 48.966
73
+ - type: map_at_3
74
+ value: 43.184
75
+ - type: map_at_5
76
+ value: 46.072
77
+ - type: mrr_at_1
78
+ value: 33.073
79
+ - type: mrr_at_10
80
+ value: 48.54
81
+ - type: mrr_at_100
82
+ value: 49.335
83
+ - type: mrr_at_1000
84
+ value: 49.338
85
+ - type: mrr_at_3
86
+ value: 43.563
87
+ - type: mrr_at_5
88
+ value: 46.383
89
+ - type: ndcg_at_1
90
+ value: 32.077
91
+ - type: ndcg_at_10
92
+ value: 57.158
93
+ - type: ndcg_at_100
94
+ value: 60.324999999999996
95
+ - type: ndcg_at_1000
96
+ value: 60.402
97
+ - type: ndcg_at_3
98
+ value: 46.934
99
+ - type: ndcg_at_5
100
+ value: 52.158
101
+ - type: precision_at_1
102
+ value: 32.077
103
+ - type: precision_at_10
104
+ value: 8.591999999999999
105
+ - type: precision_at_100
106
+ value: 0.991
107
+ - type: precision_at_1000
108
+ value: 0.1
109
+ - type: precision_at_3
110
+ value: 19.275000000000002
111
+ - type: precision_at_5
112
+ value: 14.111
113
+ - type: recall_at_1
114
+ value: 32.077
115
+ - type: recall_at_10
116
+ value: 85.917
117
+ - type: recall_at_100
118
+ value: 99.075
119
+ - type: recall_at_1000
120
+ value: 99.644
121
+ - type: recall_at_3
122
+ value: 57.824
123
+ - type: recall_at_5
124
+ value: 70.555
125
+ - task:
126
+ type: Clustering
127
+ dataset:
128
+ type: mteb/arxiv-clustering-p2p
129
+ name: MTEB ArxivClusteringP2P
130
+ config: default
131
+ split: test
132
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
133
+ metrics:
134
+ - type: v_measure
135
+ value: 48.619246083417295
136
+ - task:
137
+ type: Clustering
138
+ dataset:
139
+ type: mteb/arxiv-clustering-s2s
140
+ name: MTEB ArxivClusteringS2S
141
+ config: default
142
+ split: test
143
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
144
+ metrics:
145
+ - type: v_measure
146
+ value: 43.3574067664688
147
+ - task:
148
+ type: Reranking
149
+ dataset:
150
+ type: mteb/askubuntudupquestions-reranking
151
+ name: MTEB AskUbuntuDupQuestions
152
+ config: default
153
+ split: test
154
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
155
+ metrics:
156
+ - type: map
157
+ value: 63.06359661829253
158
+ - type: mrr
159
+ value: 76.15596007562766
160
+ - task:
161
+ type: STS
162
+ dataset:
163
+ type: mteb/biosses-sts
164
+ name: MTEB BIOSSES
165
+ config: default
166
+ split: test
167
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
168
+ metrics:
169
+ - type: cos_sim_pearson
170
+ value: 90.25407547368691
171
+ - type: cos_sim_spearman
172
+ value: 88.65081514968477
173
+ - type: euclidean_pearson
174
+ value: 88.14857116664494
175
+ - type: euclidean_spearman
176
+ value: 88.50683596540692
177
+ - type: manhattan_pearson
178
+ value: 87.9654797992225
179
+ - type: manhattan_spearman
180
+ value: 88.21164851646908
181
+ - task:
182
+ type: Classification
183
+ dataset:
184
+ type: mteb/banking77
185
+ name: MTEB Banking77Classification
186
+ config: default
187
+ split: test
188
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
189
+ metrics:
190
+ - type: accuracy
191
+ value: 86.05844155844157
192
+ - type: f1
193
+ value: 86.01555597681825
194
+ - task:
195
+ type: Clustering
196
+ dataset:
197
+ type: mteb/biorxiv-clustering-p2p
198
+ name: MTEB BiorxivClusteringP2P
199
+ config: default
200
+ split: test
201
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
202
+ metrics:
203
+ - type: v_measure
204
+ value: 39.10510519739522
205
+ - task:
206
+ type: Clustering
207
+ dataset:
208
+ type: mteb/biorxiv-clustering-s2s
209
+ name: MTEB BiorxivClusteringS2S
210
+ config: default
211
+ split: test
212
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
213
+ metrics:
214
+ - type: v_measure
215
+ value: 36.84689960264385
216
+ - task:
217
+ type: Retrieval
218
+ dataset:
219
+ type: BeIR/cqadupstack
220
+ name: MTEB CQADupstackAndroidRetrieval
221
+ config: default
222
+ split: test
223
+ revision: None
224
+ metrics:
225
+ - type: map_at_1
226
+ value: 32.800000000000004
227
+ - type: map_at_10
228
+ value: 44.857
229
+ - type: map_at_100
230
+ value: 46.512
231
+ - type: map_at_1000
232
+ value: 46.635
233
+ - type: map_at_3
234
+ value: 41.062
235
+ - type: map_at_5
236
+ value: 43.126
237
+ - type: mrr_at_1
238
+ value: 39.628
239
+ - type: mrr_at_10
240
+ value: 50.879
241
+ - type: mrr_at_100
242
+ value: 51.605000000000004
243
+ - type: mrr_at_1000
244
+ value: 51.641000000000005
245
+ - type: mrr_at_3
246
+ value: 48.14
247
+ - type: mrr_at_5
248
+ value: 49.835
249
+ - type: ndcg_at_1
250
+ value: 39.628
251
+ - type: ndcg_at_10
252
+ value: 51.819
253
+ - type: ndcg_at_100
254
+ value: 57.318999999999996
255
+ - type: ndcg_at_1000
256
+ value: 58.955999999999996
257
+ - type: ndcg_at_3
258
+ value: 46.409
259
+ - type: ndcg_at_5
260
+ value: 48.825
261
+ - type: precision_at_1
262
+ value: 39.628
263
+ - type: precision_at_10
264
+ value: 10.072000000000001
265
+ - type: precision_at_100
266
+ value: 1.625
267
+ - type: precision_at_1000
268
+ value: 0.21
269
+ - type: precision_at_3
270
+ value: 22.556
271
+ - type: precision_at_5
272
+ value: 16.309
273
+ - type: recall_at_1
274
+ value: 32.800000000000004
275
+ - type: recall_at_10
276
+ value: 65.078
277
+ - type: recall_at_100
278
+ value: 87.491
279
+ - type: recall_at_1000
280
+ value: 97.514
281
+ - type: recall_at_3
282
+ value: 49.561
283
+ - type: recall_at_5
284
+ value: 56.135999999999996
285
+ - task:
286
+ type: Retrieval
287
+ dataset:
288
+ type: BeIR/cqadupstack
289
+ name: MTEB CQADupstackEnglishRetrieval
290
+ config: default
291
+ split: test
292
+ revision: None
293
+ metrics:
294
+ - type: map_at_1
295
+ value: 32.614
296
+ - type: map_at_10
297
+ value: 43.578
298
+ - type: map_at_100
299
+ value: 44.897
300
+ - type: map_at_1000
301
+ value: 45.023
302
+ - type: map_at_3
303
+ value: 40.282000000000004
304
+ - type: map_at_5
305
+ value: 42.117
306
+ - type: mrr_at_1
307
+ value: 40.510000000000005
308
+ - type: mrr_at_10
309
+ value: 49.428
310
+ - type: mrr_at_100
311
+ value: 50.068999999999996
312
+ - type: mrr_at_1000
313
+ value: 50.111000000000004
314
+ - type: mrr_at_3
315
+ value: 47.176
316
+ - type: mrr_at_5
317
+ value: 48.583999999999996
318
+ - type: ndcg_at_1
319
+ value: 40.510000000000005
320
+ - type: ndcg_at_10
321
+ value: 49.478
322
+ - type: ndcg_at_100
323
+ value: 53.852
324
+ - type: ndcg_at_1000
325
+ value: 55.782
326
+ - type: ndcg_at_3
327
+ value: 45.091
328
+ - type: ndcg_at_5
329
+ value: 47.19
330
+ - type: precision_at_1
331
+ value: 40.510000000000005
332
+ - type: precision_at_10
333
+ value: 9.363000000000001
334
+ - type: precision_at_100
335
+ value: 1.51
336
+ - type: precision_at_1000
337
+ value: 0.196
338
+ - type: precision_at_3
339
+ value: 21.741
340
+ - type: precision_at_5
341
+ value: 15.465000000000002
342
+ - type: recall_at_1
343
+ value: 32.614
344
+ - type: recall_at_10
345
+ value: 59.782000000000004
346
+ - type: recall_at_100
347
+ value: 78.012
348
+ - type: recall_at_1000
349
+ value: 90.319
350
+ - type: recall_at_3
351
+ value: 46.825
352
+ - type: recall_at_5
353
+ value: 52.688
354
+ - task:
355
+ type: Retrieval
356
+ dataset:
357
+ type: BeIR/cqadupstack
358
+ name: MTEB CQADupstackGamingRetrieval
359
+ config: default
360
+ split: test
361
+ revision: None
362
+ metrics:
363
+ - type: map_at_1
364
+ value: 40.266000000000005
365
+ - type: map_at_10
366
+ value: 53.756
367
+ - type: map_at_100
368
+ value: 54.809
369
+ - type: map_at_1000
370
+ value: 54.855
371
+ - type: map_at_3
372
+ value: 50.073
373
+ - type: map_at_5
374
+ value: 52.293
375
+ - type: mrr_at_1
376
+ value: 46.332
377
+ - type: mrr_at_10
378
+ value: 57.116
379
+ - type: mrr_at_100
380
+ value: 57.767
381
+ - type: mrr_at_1000
382
+ value: 57.791000000000004
383
+ - type: mrr_at_3
384
+ value: 54.461999999999996
385
+ - type: mrr_at_5
386
+ value: 56.092
387
+ - type: ndcg_at_1
388
+ value: 46.332
389
+ - type: ndcg_at_10
390
+ value: 60.092
391
+ - type: ndcg_at_100
392
+ value: 64.034
393
+ - type: ndcg_at_1000
394
+ value: 64.937
395
+ - type: ndcg_at_3
396
+ value: 54.071000000000005
397
+ - type: ndcg_at_5
398
+ value: 57.254000000000005
399
+ - type: precision_at_1
400
+ value: 46.332
401
+ - type: precision_at_10
402
+ value: 9.799
403
+ - type: precision_at_100
404
+ value: 1.278
405
+ - type: precision_at_1000
406
+ value: 0.13899999999999998
407
+ - type: precision_at_3
408
+ value: 24.368000000000002
409
+ - type: precision_at_5
410
+ value: 16.89
411
+ - type: recall_at_1
412
+ value: 40.266000000000005
413
+ - type: recall_at_10
414
+ value: 75.41499999999999
415
+ - type: recall_at_100
416
+ value: 92.01700000000001
417
+ - type: recall_at_1000
418
+ value: 98.379
419
+ - type: recall_at_3
420
+ value: 59.476
421
+ - type: recall_at_5
422
+ value: 67.297
423
+ - task:
424
+ type: Retrieval
425
+ dataset:
426
+ type: BeIR/cqadupstack
427
+ name: MTEB CQADupstackGisRetrieval
428
+ config: default
429
+ split: test
430
+ revision: None
431
+ metrics:
432
+ - type: map_at_1
433
+ value: 28.589
434
+ - type: map_at_10
435
+ value: 37.755
436
+ - type: map_at_100
437
+ value: 38.881
438
+ - type: map_at_1000
439
+ value: 38.954
440
+ - type: map_at_3
441
+ value: 34.759
442
+ - type: map_at_5
443
+ value: 36.544
444
+ - type: mrr_at_1
445
+ value: 30.734
446
+ - type: mrr_at_10
447
+ value: 39.742
448
+ - type: mrr_at_100
449
+ value: 40.774
450
+ - type: mrr_at_1000
451
+ value: 40.824
452
+ - type: mrr_at_3
453
+ value: 37.137
454
+ - type: mrr_at_5
455
+ value: 38.719
456
+ - type: ndcg_at_1
457
+ value: 30.734
458
+ - type: ndcg_at_10
459
+ value: 42.978
460
+ - type: ndcg_at_100
461
+ value: 48.309000000000005
462
+ - type: ndcg_at_1000
463
+ value: 50.068
464
+ - type: ndcg_at_3
465
+ value: 37.361
466
+ - type: ndcg_at_5
467
+ value: 40.268
468
+ - type: precision_at_1
469
+ value: 30.734
470
+ - type: precision_at_10
471
+ value: 6.565
472
+ - type: precision_at_100
473
+ value: 0.964
474
+ - type: precision_at_1000
475
+ value: 0.11499999999999999
476
+ - type: precision_at_3
477
+ value: 15.744
478
+ - type: precision_at_5
479
+ value: 11.096
480
+ - type: recall_at_1
481
+ value: 28.589
482
+ - type: recall_at_10
483
+ value: 57.126999999999995
484
+ - type: recall_at_100
485
+ value: 81.051
486
+ - type: recall_at_1000
487
+ value: 94.027
488
+ - type: recall_at_3
489
+ value: 42.045
490
+ - type: recall_at_5
491
+ value: 49.019
492
+ - task:
493
+ type: Retrieval
494
+ dataset:
495
+ type: BeIR/cqadupstack
496
+ name: MTEB CQADupstackMathematicaRetrieval
497
+ config: default
498
+ split: test
499
+ revision: None
500
+ metrics:
501
+ - type: map_at_1
502
+ value: 18.5
503
+ - type: map_at_10
504
+ value: 27.950999999999997
505
+ - type: map_at_100
506
+ value: 29.186
507
+ - type: map_at_1000
508
+ value: 29.298000000000002
509
+ - type: map_at_3
510
+ value: 25.141000000000002
511
+ - type: map_at_5
512
+ value: 26.848
513
+ - type: mrr_at_1
514
+ value: 22.637
515
+ - type: mrr_at_10
516
+ value: 32.572
517
+ - type: mrr_at_100
518
+ value: 33.472
519
+ - type: mrr_at_1000
520
+ value: 33.533
521
+ - type: mrr_at_3
522
+ value: 29.747
523
+ - type: mrr_at_5
524
+ value: 31.482
525
+ - type: ndcg_at_1
526
+ value: 22.637
527
+ - type: ndcg_at_10
528
+ value: 33.73
529
+ - type: ndcg_at_100
530
+ value: 39.568
531
+ - type: ndcg_at_1000
532
+ value: 42.201
533
+ - type: ndcg_at_3
534
+ value: 28.505999999999997
535
+ - type: ndcg_at_5
536
+ value: 31.255
537
+ - type: precision_at_1
538
+ value: 22.637
539
+ - type: precision_at_10
540
+ value: 6.281000000000001
541
+ - type: precision_at_100
542
+ value: 1.073
543
+ - type: precision_at_1000
544
+ value: 0.14300000000000002
545
+ - type: precision_at_3
546
+ value: 13.847000000000001
547
+ - type: precision_at_5
548
+ value: 10.224
549
+ - type: recall_at_1
550
+ value: 18.5
551
+ - type: recall_at_10
552
+ value: 46.744
553
+ - type: recall_at_100
554
+ value: 72.072
555
+ - type: recall_at_1000
556
+ value: 91.03999999999999
557
+ - type: recall_at_3
558
+ value: 32.551
559
+ - type: recall_at_5
560
+ value: 39.533
561
+ - task:
562
+ type: Retrieval
563
+ dataset:
564
+ type: BeIR/cqadupstack
565
+ name: MTEB CQADupstackPhysicsRetrieval
566
+ config: default
567
+ split: test
568
+ revision: None
569
+ metrics:
570
+ - type: map_at_1
571
+ value: 30.602
572
+ - type: map_at_10
573
+ value: 42.18
574
+ - type: map_at_100
575
+ value: 43.6
576
+ - type: map_at_1000
577
+ value: 43.704
578
+ - type: map_at_3
579
+ value: 38.413000000000004
580
+ - type: map_at_5
581
+ value: 40.626
582
+ - type: mrr_at_1
583
+ value: 37.344
584
+ - type: mrr_at_10
585
+ value: 47.638000000000005
586
+ - type: mrr_at_100
587
+ value: 48.485
588
+ - type: mrr_at_1000
589
+ value: 48.52
590
+ - type: mrr_at_3
591
+ value: 44.867000000000004
592
+ - type: mrr_at_5
593
+ value: 46.566
594
+ - type: ndcg_at_1
595
+ value: 37.344
596
+ - type: ndcg_at_10
597
+ value: 48.632
598
+ - type: ndcg_at_100
599
+ value: 54.215
600
+ - type: ndcg_at_1000
601
+ value: 55.981
602
+ - type: ndcg_at_3
603
+ value: 42.681999999999995
604
+ - type: ndcg_at_5
605
+ value: 45.732
606
+ - type: precision_at_1
607
+ value: 37.344
608
+ - type: precision_at_10
609
+ value: 8.932
610
+ - type: precision_at_100
611
+ value: 1.376
612
+ - type: precision_at_1000
613
+ value: 0.17099999999999999
614
+ - type: precision_at_3
615
+ value: 20.276
616
+ - type: precision_at_5
617
+ value: 14.726
618
+ - type: recall_at_1
619
+ value: 30.602
620
+ - type: recall_at_10
621
+ value: 62.273
622
+ - type: recall_at_100
623
+ value: 85.12100000000001
624
+ - type: recall_at_1000
625
+ value: 96.439
626
+ - type: recall_at_3
627
+ value: 45.848
628
+ - type: recall_at_5
629
+ value: 53.615
630
+ - task:
631
+ type: Retrieval
632
+ dataset:
633
+ type: BeIR/cqadupstack
634
+ name: MTEB CQADupstackProgrammersRetrieval
635
+ config: default
636
+ split: test
637
+ revision: None
638
+ metrics:
639
+ - type: map_at_1
640
+ value: 23.952
641
+ - type: map_at_10
642
+ value: 35.177
643
+ - type: map_at_100
644
+ value: 36.59
645
+ - type: map_at_1000
646
+ value: 36.703
647
+ - type: map_at_3
648
+ value: 31.261
649
+ - type: map_at_5
650
+ value: 33.222
651
+ - type: mrr_at_1
652
+ value: 29.337999999999997
653
+ - type: mrr_at_10
654
+ value: 40.152
655
+ - type: mrr_at_100
656
+ value: 40.963
657
+ - type: mrr_at_1000
658
+ value: 41.016999999999996
659
+ - type: mrr_at_3
660
+ value: 36.91
661
+ - type: mrr_at_5
662
+ value: 38.685
663
+ - type: ndcg_at_1
664
+ value: 29.337999999999997
665
+ - type: ndcg_at_10
666
+ value: 41.994
667
+ - type: ndcg_at_100
668
+ value: 47.587
669
+ - type: ndcg_at_1000
670
+ value: 49.791000000000004
671
+ - type: ndcg_at_3
672
+ value: 35.27
673
+ - type: ndcg_at_5
674
+ value: 38.042
675
+ - type: precision_at_1
676
+ value: 29.337999999999997
677
+ - type: precision_at_10
678
+ value: 8.276
679
+ - type: precision_at_100
680
+ value: 1.276
681
+ - type: precision_at_1000
682
+ value: 0.164
683
+ - type: precision_at_3
684
+ value: 17.161
685
+ - type: precision_at_5
686
+ value: 12.671
687
+ - type: recall_at_1
688
+ value: 23.952
689
+ - type: recall_at_10
690
+ value: 57.267
691
+ - type: recall_at_100
692
+ value: 80.886
693
+ - type: recall_at_1000
694
+ value: 95.611
695
+ - type: recall_at_3
696
+ value: 38.622
697
+ - type: recall_at_5
698
+ value: 45.811
699
+ - task:
700
+ type: Retrieval
701
+ dataset:
702
+ type: BeIR/cqadupstack
703
+ name: MTEB CQADupstackRetrieval
704
+ config: default
705
+ split: test
706
+ revision: None
707
+ metrics:
708
+ - type: map_at_1
709
+ value: 27.092083333333335
710
+ - type: map_at_10
711
+ value: 37.2925
712
+ - type: map_at_100
713
+ value: 38.57041666666666
714
+ - type: map_at_1000
715
+ value: 38.68141666666667
716
+ - type: map_at_3
717
+ value: 34.080000000000005
718
+ - type: map_at_5
719
+ value: 35.89958333333333
720
+ - type: mrr_at_1
721
+ value: 31.94758333333333
722
+ - type: mrr_at_10
723
+ value: 41.51049999999999
724
+ - type: mrr_at_100
725
+ value: 42.36099999999999
726
+ - type: mrr_at_1000
727
+ value: 42.4125
728
+ - type: mrr_at_3
729
+ value: 38.849583333333335
730
+ - type: mrr_at_5
731
+ value: 40.448249999999994
732
+ - type: ndcg_at_1
733
+ value: 31.94758333333333
734
+ - type: ndcg_at_10
735
+ value: 43.17633333333333
736
+ - type: ndcg_at_100
737
+ value: 48.45241666666668
738
+ - type: ndcg_at_1000
739
+ value: 50.513999999999996
740
+ - type: ndcg_at_3
741
+ value: 37.75216666666667
742
+ - type: ndcg_at_5
743
+ value: 40.393833333333326
744
+ - type: precision_at_1
745
+ value: 31.94758333333333
746
+ - type: precision_at_10
747
+ value: 7.688916666666666
748
+ - type: precision_at_100
749
+ value: 1.2250833333333333
750
+ - type: precision_at_1000
751
+ value: 0.1595
752
+ - type: precision_at_3
753
+ value: 17.465999999999998
754
+ - type: precision_at_5
755
+ value: 12.548083333333333
756
+ - type: recall_at_1
757
+ value: 27.092083333333335
758
+ - type: recall_at_10
759
+ value: 56.286583333333326
760
+ - type: recall_at_100
761
+ value: 79.09033333333333
762
+ - type: recall_at_1000
763
+ value: 93.27483333333335
764
+ - type: recall_at_3
765
+ value: 41.35325
766
+ - type: recall_at_5
767
+ value: 48.072750000000006
768
+ - task:
769
+ type: Retrieval
770
+ dataset:
771
+ type: BeIR/cqadupstack
772
+ name: MTEB CQADupstackStatsRetrieval
773
+ config: default
774
+ split: test
775
+ revision: None
776
+ metrics:
777
+ - type: map_at_1
778
+ value: 25.825
779
+ - type: map_at_10
780
+ value: 33.723
781
+ - type: map_at_100
782
+ value: 34.74
783
+ - type: map_at_1000
784
+ value: 34.824
785
+ - type: map_at_3
786
+ value: 31.369000000000003
787
+ - type: map_at_5
788
+ value: 32.533
789
+ - type: mrr_at_1
790
+ value: 29.293999999999997
791
+ - type: mrr_at_10
792
+ value: 36.84
793
+ - type: mrr_at_100
794
+ value: 37.681
795
+ - type: mrr_at_1000
796
+ value: 37.742
797
+ - type: mrr_at_3
798
+ value: 34.79
799
+ - type: mrr_at_5
800
+ value: 35.872
801
+ - type: ndcg_at_1
802
+ value: 29.293999999999997
803
+ - type: ndcg_at_10
804
+ value: 38.385999999999996
805
+ - type: ndcg_at_100
806
+ value: 43.327
807
+ - type: ndcg_at_1000
808
+ value: 45.53
809
+ - type: ndcg_at_3
810
+ value: 33.985
811
+ - type: ndcg_at_5
812
+ value: 35.817
813
+ - type: precision_at_1
814
+ value: 29.293999999999997
815
+ - type: precision_at_10
816
+ value: 6.12
817
+ - type: precision_at_100
818
+ value: 0.9329999999999999
819
+ - type: precision_at_1000
820
+ value: 0.11900000000000001
821
+ - type: precision_at_3
822
+ value: 14.621999999999998
823
+ - type: precision_at_5
824
+ value: 10.030999999999999
825
+ - type: recall_at_1
826
+ value: 25.825
827
+ - type: recall_at_10
828
+ value: 49.647000000000006
829
+ - type: recall_at_100
830
+ value: 72.32300000000001
831
+ - type: recall_at_1000
832
+ value: 88.62400000000001
833
+ - type: recall_at_3
834
+ value: 37.366
835
+ - type: recall_at_5
836
+ value: 41.957
837
+ - task:
838
+ type: Retrieval
839
+ dataset:
840
+ type: BeIR/cqadupstack
841
+ name: MTEB CQADupstackTexRetrieval
842
+ config: default
843
+ split: test
844
+ revision: None
845
+ metrics:
846
+ - type: map_at_1
847
+ value: 18.139
848
+ - type: map_at_10
849
+ value: 26.107000000000003
850
+ - type: map_at_100
851
+ value: 27.406999999999996
852
+ - type: map_at_1000
853
+ value: 27.535999999999998
854
+ - type: map_at_3
855
+ value: 23.445
856
+ - type: map_at_5
857
+ value: 24.916
858
+ - type: mrr_at_1
859
+ value: 21.817
860
+ - type: mrr_at_10
861
+ value: 29.99
862
+ - type: mrr_at_100
863
+ value: 31.052000000000003
864
+ - type: mrr_at_1000
865
+ value: 31.128
866
+ - type: mrr_at_3
867
+ value: 27.627000000000002
868
+ - type: mrr_at_5
869
+ value: 29.005
870
+ - type: ndcg_at_1
871
+ value: 21.817
872
+ - type: ndcg_at_10
873
+ value: 31.135
874
+ - type: ndcg_at_100
875
+ value: 37.108000000000004
876
+ - type: ndcg_at_1000
877
+ value: 39.965
878
+ - type: ndcg_at_3
879
+ value: 26.439
880
+ - type: ndcg_at_5
881
+ value: 28.655
882
+ - type: precision_at_1
883
+ value: 21.817
884
+ - type: precision_at_10
885
+ value: 5.757000000000001
886
+ - type: precision_at_100
887
+ value: 1.036
888
+ - type: precision_at_1000
889
+ value: 0.147
890
+ - type: precision_at_3
891
+ value: 12.537
892
+ - type: precision_at_5
893
+ value: 9.229
894
+ - type: recall_at_1
895
+ value: 18.139
896
+ - type: recall_at_10
897
+ value: 42.272999999999996
898
+ - type: recall_at_100
899
+ value: 68.657
900
+ - type: recall_at_1000
901
+ value: 88.93799999999999
902
+ - type: recall_at_3
903
+ value: 29.266
904
+ - type: recall_at_5
905
+ value: 34.892
906
+ - task:
907
+ type: Retrieval
908
+ dataset:
909
+ type: BeIR/cqadupstack
910
+ name: MTEB CQADupstackUnixRetrieval
911
+ config: default
912
+ split: test
913
+ revision: None
914
+ metrics:
915
+ - type: map_at_1
916
+ value: 27.755000000000003
917
+ - type: map_at_10
918
+ value: 37.384
919
+ - type: map_at_100
920
+ value: 38.56
921
+ - type: map_at_1000
922
+ value: 38.655
923
+ - type: map_at_3
924
+ value: 34.214
925
+ - type: map_at_5
926
+ value: 35.96
927
+ - type: mrr_at_1
928
+ value: 32.369
929
+ - type: mrr_at_10
930
+ value: 41.625
931
+ - type: mrr_at_100
932
+ value: 42.449
933
+ - type: mrr_at_1000
934
+ value: 42.502
935
+ - type: mrr_at_3
936
+ value: 38.899
937
+ - type: mrr_at_5
938
+ value: 40.489999999999995
939
+ - type: ndcg_at_1
940
+ value: 32.369
941
+ - type: ndcg_at_10
942
+ value: 43.287
943
+ - type: ndcg_at_100
944
+ value: 48.504999999999995
945
+ - type: ndcg_at_1000
946
+ value: 50.552
947
+ - type: ndcg_at_3
948
+ value: 37.549
949
+ - type: ndcg_at_5
950
+ value: 40.204
951
+ - type: precision_at_1
952
+ value: 32.369
953
+ - type: precision_at_10
954
+ value: 7.425
955
+ - type: precision_at_100
956
+ value: 1.134
957
+ - type: precision_at_1000
958
+ value: 0.14200000000000002
959
+ - type: precision_at_3
960
+ value: 17.102
961
+ - type: precision_at_5
962
+ value: 12.107999999999999
963
+ - type: recall_at_1
964
+ value: 27.755000000000003
965
+ - type: recall_at_10
966
+ value: 57.071000000000005
967
+ - type: recall_at_100
968
+ value: 79.456
969
+ - type: recall_at_1000
970
+ value: 93.54299999999999
971
+ - type: recall_at_3
972
+ value: 41.298
973
+ - type: recall_at_5
974
+ value: 48.037
975
+ - task:
976
+ type: Retrieval
977
+ dataset:
978
+ type: BeIR/cqadupstack
979
+ name: MTEB CQADupstackWebmastersRetrieval
980
+ config: default
981
+ split: test
982
+ revision: None
983
+ metrics:
984
+ - type: map_at_1
985
+ value: 24.855
986
+ - type: map_at_10
987
+ value: 34.53
988
+ - type: map_at_100
989
+ value: 36.167
990
+ - type: map_at_1000
991
+ value: 36.394999999999996
992
+ - type: map_at_3
993
+ value: 31.037
994
+ - type: map_at_5
995
+ value: 33.119
996
+ - type: mrr_at_1
997
+ value: 30.631999999999998
998
+ - type: mrr_at_10
999
+ value: 39.763999999999996
1000
+ - type: mrr_at_100
1001
+ value: 40.77
1002
+ - type: mrr_at_1000
1003
+ value: 40.826
1004
+ - type: mrr_at_3
1005
+ value: 36.495
1006
+ - type: mrr_at_5
1007
+ value: 38.561
1008
+ - type: ndcg_at_1
1009
+ value: 30.631999999999998
1010
+ - type: ndcg_at_10
1011
+ value: 40.942
1012
+ - type: ndcg_at_100
1013
+ value: 47.07
1014
+ - type: ndcg_at_1000
1015
+ value: 49.363
1016
+ - type: ndcg_at_3
1017
+ value: 35.038000000000004
1018
+ - type: ndcg_at_5
1019
+ value: 38.161
1020
+ - type: precision_at_1
1021
+ value: 30.631999999999998
1022
+ - type: precision_at_10
1023
+ value: 7.983999999999999
1024
+ - type: precision_at_100
1025
+ value: 1.6070000000000002
1026
+ - type: precision_at_1000
1027
+ value: 0.246
1028
+ - type: precision_at_3
1029
+ value: 16.206
1030
+ - type: precision_at_5
1031
+ value: 12.253
1032
+ - type: recall_at_1
1033
+ value: 24.855
1034
+ - type: recall_at_10
1035
+ value: 53.291999999999994
1036
+ - type: recall_at_100
1037
+ value: 80.283
1038
+ - type: recall_at_1000
1039
+ value: 94.309
1040
+ - type: recall_at_3
1041
+ value: 37.257
1042
+ - type: recall_at_5
1043
+ value: 45.282
1044
+ - task:
1045
+ type: Retrieval
1046
+ dataset:
1047
+ type: BeIR/cqadupstack
1048
+ name: MTEB CQADupstackWordpressRetrieval
1049
+ config: default
1050
+ split: test
1051
+ revision: None
1052
+ metrics:
1053
+ - type: map_at_1
1054
+ value: 21.208
1055
+ - type: map_at_10
1056
+ value: 30.512
1057
+ - type: map_at_100
1058
+ value: 31.496000000000002
1059
+ - type: map_at_1000
1060
+ value: 31.595000000000002
1061
+ - type: map_at_3
1062
+ value: 27.904
1063
+ - type: map_at_5
1064
+ value: 29.491
1065
+ - type: mrr_at_1
1066
+ value: 22.736
1067
+ - type: mrr_at_10
1068
+ value: 32.379999999999995
1069
+ - type: mrr_at_100
1070
+ value: 33.245000000000005
1071
+ - type: mrr_at_1000
1072
+ value: 33.315
1073
+ - type: mrr_at_3
1074
+ value: 29.945
1075
+ - type: mrr_at_5
1076
+ value: 31.488
1077
+ - type: ndcg_at_1
1078
+ value: 22.736
1079
+ - type: ndcg_at_10
1080
+ value: 35.643
1081
+ - type: ndcg_at_100
1082
+ value: 40.535
1083
+ - type: ndcg_at_1000
1084
+ value: 43.042
1085
+ - type: ndcg_at_3
1086
+ value: 30.625000000000004
1087
+ - type: ndcg_at_5
1088
+ value: 33.323
1089
+ - type: precision_at_1
1090
+ value: 22.736
1091
+ - type: precision_at_10
1092
+ value: 5.6930000000000005
1093
+ - type: precision_at_100
1094
+ value: 0.889
1095
+ - type: precision_at_1000
1096
+ value: 0.122
1097
+ - type: precision_at_3
1098
+ value: 13.431999999999999
1099
+ - type: precision_at_5
1100
+ value: 9.575
1101
+ - type: recall_at_1
1102
+ value: 21.208
1103
+ - type: recall_at_10
1104
+ value: 49.47
1105
+ - type: recall_at_100
1106
+ value: 71.71499999999999
1107
+ - type: recall_at_1000
1108
+ value: 90.55499999999999
1109
+ - type: recall_at_3
1110
+ value: 36.124
1111
+ - type: recall_at_5
1112
+ value: 42.606
1113
+ - task:
1114
+ type: Retrieval
1115
+ dataset:
1116
+ type: climate-fever
1117
+ name: MTEB ClimateFEVER
1118
+ config: default
1119
+ split: test
1120
+ revision: None
1121
+ metrics:
1122
+ - type: map_at_1
1123
+ value: 11.363
1124
+ - type: map_at_10
1125
+ value: 20.312
1126
+ - type: map_at_100
1127
+ value: 22.225
1128
+ - type: map_at_1000
1129
+ value: 22.411
1130
+ - type: map_at_3
1131
+ value: 16.68
1132
+ - type: map_at_5
1133
+ value: 18.608
1134
+ - type: mrr_at_1
1135
+ value: 25.537
1136
+ - type: mrr_at_10
1137
+ value: 37.933
1138
+ - type: mrr_at_100
1139
+ value: 38.875
1140
+ - type: mrr_at_1000
1141
+ value: 38.911
1142
+ - type: mrr_at_3
1143
+ value: 34.387
1144
+ - type: mrr_at_5
1145
+ value: 36.51
1146
+ - type: ndcg_at_1
1147
+ value: 25.537
1148
+ - type: ndcg_at_10
1149
+ value: 28.82
1150
+ - type: ndcg_at_100
1151
+ value: 36.341
1152
+ - type: ndcg_at_1000
1153
+ value: 39.615
1154
+ - type: ndcg_at_3
1155
+ value: 23.01
1156
+ - type: ndcg_at_5
1157
+ value: 25.269000000000002
1158
+ - type: precision_at_1
1159
+ value: 25.537
1160
+ - type: precision_at_10
1161
+ value: 9.153
1162
+ - type: precision_at_100
1163
+ value: 1.7319999999999998
1164
+ - type: precision_at_1000
1165
+ value: 0.234
1166
+ - type: precision_at_3
1167
+ value: 17.22
1168
+ - type: precision_at_5
1169
+ value: 13.629
1170
+ - type: recall_at_1
1171
+ value: 11.363
1172
+ - type: recall_at_10
1173
+ value: 35.382999999999996
1174
+ - type: recall_at_100
1175
+ value: 61.367000000000004
1176
+ - type: recall_at_1000
1177
+ value: 79.699
1178
+ - type: recall_at_3
1179
+ value: 21.495
1180
+ - type: recall_at_5
1181
+ value: 27.42
1182
+ - task:
1183
+ type: Retrieval
1184
+ dataset:
1185
+ type: dbpedia-entity
1186
+ name: MTEB DBPedia
1187
+ config: default
1188
+ split: test
1189
+ revision: None
1190
+ metrics:
1191
+ - type: map_at_1
1192
+ value: 9.65
1193
+ - type: map_at_10
1194
+ value: 20.742
1195
+ - type: map_at_100
1196
+ value: 29.614
1197
+ - type: map_at_1000
1198
+ value: 31.373
1199
+ - type: map_at_3
1200
+ value: 14.667
1201
+ - type: map_at_5
1202
+ value: 17.186
1203
+ - type: mrr_at_1
1204
+ value: 69.75
1205
+ - type: mrr_at_10
1206
+ value: 76.762
1207
+ - type: mrr_at_100
1208
+ value: 77.171
1209
+ - type: mrr_at_1000
1210
+ value: 77.179
1211
+ - type: mrr_at_3
1212
+ value: 75.125
1213
+ - type: mrr_at_5
1214
+ value: 76.287
1215
+ - type: ndcg_at_1
1216
+ value: 57.62500000000001
1217
+ - type: ndcg_at_10
1218
+ value: 42.370999999999995
1219
+ - type: ndcg_at_100
1220
+ value: 47.897
1221
+ - type: ndcg_at_1000
1222
+ value: 55.393
1223
+ - type: ndcg_at_3
1224
+ value: 46.317
1225
+ - type: ndcg_at_5
1226
+ value: 43.906
1227
+ - type: precision_at_1
1228
+ value: 69.75
1229
+ - type: precision_at_10
1230
+ value: 33.95
1231
+ - type: precision_at_100
1232
+ value: 10.885
1233
+ - type: precision_at_1000
1234
+ value: 2.2239999999999998
1235
+ - type: precision_at_3
1236
+ value: 49.75
1237
+ - type: precision_at_5
1238
+ value: 42.3
1239
+ - type: recall_at_1
1240
+ value: 9.65
1241
+ - type: recall_at_10
1242
+ value: 26.117
1243
+ - type: recall_at_100
1244
+ value: 55.084
1245
+ - type: recall_at_1000
1246
+ value: 78.62400000000001
1247
+ - type: recall_at_3
1248
+ value: 15.823
1249
+ - type: recall_at_5
1250
+ value: 19.652
1251
+ - task:
1252
+ type: Classification
1253
+ dataset:
1254
+ type: mteb/emotion
1255
+ name: MTEB EmotionClassification
1256
+ config: default
1257
+ split: test
1258
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1259
+ metrics:
1260
+ - type: accuracy
1261
+ value: 47.885
1262
+ - type: f1
1263
+ value: 42.99567641346983
1264
+ - task:
1265
+ type: Retrieval
1266
+ dataset:
1267
+ type: fever
1268
+ name: MTEB FEVER
1269
+ config: default
1270
+ split: test
1271
+ revision: None
1272
+ metrics:
1273
+ - type: map_at_1
1274
+ value: 70.97
1275
+ - type: map_at_10
1276
+ value: 80.34599999999999
1277
+ - type: map_at_100
1278
+ value: 80.571
1279
+ - type: map_at_1000
1280
+ value: 80.584
1281
+ - type: map_at_3
1282
+ value: 79.279
1283
+ - type: map_at_5
1284
+ value: 79.94
1285
+ - type: mrr_at_1
1286
+ value: 76.613
1287
+ - type: mrr_at_10
1288
+ value: 85.15700000000001
1289
+ - type: mrr_at_100
1290
+ value: 85.249
1291
+ - type: mrr_at_1000
1292
+ value: 85.252
1293
+ - type: mrr_at_3
1294
+ value: 84.33800000000001
1295
+ - type: mrr_at_5
1296
+ value: 84.89
1297
+ - type: ndcg_at_1
1298
+ value: 76.613
1299
+ - type: ndcg_at_10
1300
+ value: 84.53399999999999
1301
+ - type: ndcg_at_100
1302
+ value: 85.359
1303
+ - type: ndcg_at_1000
1304
+ value: 85.607
1305
+ - type: ndcg_at_3
1306
+ value: 82.76599999999999
1307
+ - type: ndcg_at_5
1308
+ value: 83.736
1309
+ - type: precision_at_1
1310
+ value: 76.613
1311
+ - type: precision_at_10
1312
+ value: 10.206
1313
+ - type: precision_at_100
1314
+ value: 1.083
1315
+ - type: precision_at_1000
1316
+ value: 0.11199999999999999
1317
+ - type: precision_at_3
1318
+ value: 31.913000000000004
1319
+ - type: precision_at_5
1320
+ value: 19.769000000000002
1321
+ - type: recall_at_1
1322
+ value: 70.97
1323
+ - type: recall_at_10
1324
+ value: 92.674
1325
+ - type: recall_at_100
1326
+ value: 95.985
1327
+ - type: recall_at_1000
1328
+ value: 97.57000000000001
1329
+ - type: recall_at_3
1330
+ value: 87.742
1331
+ - type: recall_at_5
1332
+ value: 90.28
1333
+ - task:
1334
+ type: Retrieval
1335
+ dataset:
1336
+ type: fiqa
1337
+ name: MTEB FiQA2018
1338
+ config: default
1339
+ split: test
1340
+ revision: None
1341
+ metrics:
1342
+ - type: map_at_1
1343
+ value: 22.494
1344
+ - type: map_at_10
1345
+ value: 36.491
1346
+ - type: map_at_100
1347
+ value: 38.550000000000004
1348
+ - type: map_at_1000
1349
+ value: 38.726
1350
+ - type: map_at_3
1351
+ value: 31.807000000000002
1352
+ - type: map_at_5
1353
+ value: 34.299
1354
+ - type: mrr_at_1
1355
+ value: 44.907000000000004
1356
+ - type: mrr_at_10
1357
+ value: 53.146
1358
+ - type: mrr_at_100
1359
+ value: 54.013999999999996
1360
+ - type: mrr_at_1000
1361
+ value: 54.044000000000004
1362
+ - type: mrr_at_3
1363
+ value: 50.952
1364
+ - type: mrr_at_5
1365
+ value: 52.124
1366
+ - type: ndcg_at_1
1367
+ value: 44.907000000000004
1368
+ - type: ndcg_at_10
1369
+ value: 44.499
1370
+ - type: ndcg_at_100
1371
+ value: 51.629000000000005
1372
+ - type: ndcg_at_1000
1373
+ value: 54.367
1374
+ - type: ndcg_at_3
1375
+ value: 40.900999999999996
1376
+ - type: ndcg_at_5
1377
+ value: 41.737
1378
+ - type: precision_at_1
1379
+ value: 44.907000000000004
1380
+ - type: precision_at_10
1381
+ value: 12.346
1382
+ - type: precision_at_100
1383
+ value: 1.974
1384
+ - type: precision_at_1000
1385
+ value: 0.246
1386
+ - type: precision_at_3
1387
+ value: 27.366
1388
+ - type: precision_at_5
1389
+ value: 19.846
1390
+ - type: recall_at_1
1391
+ value: 22.494
1392
+ - type: recall_at_10
1393
+ value: 51.156
1394
+ - type: recall_at_100
1395
+ value: 77.11200000000001
1396
+ - type: recall_at_1000
1397
+ value: 93.44
1398
+ - type: recall_at_3
1399
+ value: 36.574
1400
+ - type: recall_at_5
1401
+ value: 42.361
1402
+ - task:
1403
+ type: Retrieval
1404
+ dataset:
1405
+ type: hotpotqa
1406
+ name: MTEB HotpotQA
1407
+ config: default
1408
+ split: test
1409
+ revision: None
1410
+ metrics:
1411
+ - type: map_at_1
1412
+ value: 38.568999999999996
1413
+ - type: map_at_10
1414
+ value: 58.485
1415
+ - type: map_at_100
1416
+ value: 59.358999999999995
1417
+ - type: map_at_1000
1418
+ value: 59.429
1419
+ - type: map_at_3
1420
+ value: 55.217000000000006
1421
+ - type: map_at_5
1422
+ value: 57.236
1423
+ - type: mrr_at_1
1424
+ value: 77.137
1425
+ - type: mrr_at_10
1426
+ value: 82.829
1427
+ - type: mrr_at_100
1428
+ value: 83.04599999999999
1429
+ - type: mrr_at_1000
1430
+ value: 83.05399999999999
1431
+ - type: mrr_at_3
1432
+ value: 81.904
1433
+ - type: mrr_at_5
1434
+ value: 82.50800000000001
1435
+ - type: ndcg_at_1
1436
+ value: 77.137
1437
+ - type: ndcg_at_10
1438
+ value: 67.156
1439
+ - type: ndcg_at_100
1440
+ value: 70.298
1441
+ - type: ndcg_at_1000
1442
+ value: 71.65700000000001
1443
+ - type: ndcg_at_3
1444
+ value: 62.535
1445
+ - type: ndcg_at_5
1446
+ value: 65.095
1447
+ - type: precision_at_1
1448
+ value: 77.137
1449
+ - type: precision_at_10
1450
+ value: 13.911999999999999
1451
+ - type: precision_at_100
1452
+ value: 1.6389999999999998
1453
+ - type: precision_at_1000
1454
+ value: 0.182
1455
+ - type: precision_at_3
1456
+ value: 39.572
1457
+ - type: precision_at_5
1458
+ value: 25.766
1459
+ - type: recall_at_1
1460
+ value: 38.568999999999996
1461
+ - type: recall_at_10
1462
+ value: 69.56099999999999
1463
+ - type: recall_at_100
1464
+ value: 81.931
1465
+ - type: recall_at_1000
1466
+ value: 90.91799999999999
1467
+ - type: recall_at_3
1468
+ value: 59.358999999999995
1469
+ - type: recall_at_5
1470
+ value: 64.416
1471
+ - task:
1472
+ type: Classification
1473
+ dataset:
1474
+ type: mteb/imdb
1475
+ name: MTEB ImdbClassification
1476
+ config: default
1477
+ split: test
1478
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1479
+ metrics:
1480
+ - type: accuracy
1481
+ value: 88.45600000000002
1482
+ - type: ap
1483
+ value: 84.09725115338568
1484
+ - type: f1
1485
+ value: 88.41874909080512
1486
+ - task:
1487
+ type: Retrieval
1488
+ dataset:
1489
+ type: msmarco
1490
+ name: MTEB MSMARCO
1491
+ config: default
1492
+ split: dev
1493
+ revision: None
1494
+ metrics:
1495
+ - type: map_at_1
1496
+ value: 21.404999999999998
1497
+ - type: map_at_10
1498
+ value: 33.921
1499
+ - type: map_at_100
1500
+ value: 35.116
1501
+ - type: map_at_1000
1502
+ value: 35.164
1503
+ - type: map_at_3
1504
+ value: 30.043999999999997
1505
+ - type: map_at_5
1506
+ value: 32.327
1507
+ - type: mrr_at_1
1508
+ value: 21.977
1509
+ - type: mrr_at_10
1510
+ value: 34.505
1511
+ - type: mrr_at_100
1512
+ value: 35.638999999999996
1513
+ - type: mrr_at_1000
1514
+ value: 35.68
1515
+ - type: mrr_at_3
1516
+ value: 30.703999999999997
1517
+ - type: mrr_at_5
1518
+ value: 32.96
1519
+ - type: ndcg_at_1
1520
+ value: 21.963
1521
+ - type: ndcg_at_10
1522
+ value: 40.859
1523
+ - type: ndcg_at_100
1524
+ value: 46.614
1525
+ - type: ndcg_at_1000
1526
+ value: 47.789
1527
+ - type: ndcg_at_3
1528
+ value: 33.007999999999996
1529
+ - type: ndcg_at_5
1530
+ value: 37.084
1531
+ - type: precision_at_1
1532
+ value: 21.963
1533
+ - type: precision_at_10
1534
+ value: 6.493
1535
+ - type: precision_at_100
1536
+ value: 0.938
1537
+ - type: precision_at_1000
1538
+ value: 0.104
1539
+ - type: precision_at_3
1540
+ value: 14.155000000000001
1541
+ - type: precision_at_5
1542
+ value: 10.544
1543
+ - type: recall_at_1
1544
+ value: 21.404999999999998
1545
+ - type: recall_at_10
1546
+ value: 62.175000000000004
1547
+ - type: recall_at_100
1548
+ value: 88.786
1549
+ - type: recall_at_1000
1550
+ value: 97.738
1551
+ - type: recall_at_3
1552
+ value: 40.925
1553
+ - type: recall_at_5
1554
+ value: 50.722
1555
+ - task:
1556
+ type: Classification
1557
+ dataset:
1558
+ type: mteb/mtop_domain
1559
+ name: MTEB MTOPDomainClassification (en)
1560
+ config: en
1561
+ split: test
1562
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1563
+ metrics:
1564
+ - type: accuracy
1565
+ value: 93.50661194710442
1566
+ - type: f1
1567
+ value: 93.30311193153668
1568
+ - task:
1569
+ type: Classification
1570
+ dataset:
1571
+ type: mteb/mtop_intent
1572
+ name: MTEB MTOPIntentClassification (en)
1573
+ config: en
1574
+ split: test
1575
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1576
+ metrics:
1577
+ - type: accuracy
1578
+ value: 73.24669402644778
1579
+ - type: f1
1580
+ value: 54.23122108002977
1581
+ - task:
1582
+ type: Classification
1583
+ dataset:
1584
+ type: mteb/amazon_massive_intent
1585
+ name: MTEB MassiveIntentClassification (en)
1586
+ config: en
1587
+ split: test
1588
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1589
+ metrics:
1590
+ - type: accuracy
1591
+ value: 72.61936785474109
1592
+ - type: f1
1593
+ value: 70.52644941025565
1594
+ - task:
1595
+ type: Classification
1596
+ dataset:
1597
+ type: mteb/amazon_massive_scenario
1598
+ name: MTEB MassiveScenarioClassification (en)
1599
+ config: en
1600
+ split: test
1601
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1602
+ metrics:
1603
+ - type: accuracy
1604
+ value: 76.76529926025555
1605
+ - type: f1
1606
+ value: 77.26872729322514
1607
+ - task:
1608
+ type: Clustering
1609
+ dataset:
1610
+ type: mteb/medrxiv-clustering-p2p
1611
+ name: MTEB MedrxivClusteringP2P
1612
+ config: default
1613
+ split: test
1614
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1615
+ metrics:
1616
+ - type: v_measure
1617
+ value: 33.39450293021839
1618
+ - task:
1619
+ type: Clustering
1620
+ dataset:
1621
+ type: mteb/medrxiv-clustering-s2s
1622
+ name: MTEB MedrxivClusteringS2S
1623
+ config: default
1624
+ split: test
1625
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1626
+ metrics:
1627
+ - type: v_measure
1628
+ value: 31.757796879839294
1629
+ - task:
1630
+ type: Reranking
1631
+ dataset:
1632
+ type: mteb/mind_small
1633
+ name: MTEB MindSmallReranking
1634
+ config: default
1635
+ split: test
1636
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1637
+ metrics:
1638
+ - type: map
1639
+ value: 32.62512146657428
1640
+ - type: mrr
1641
+ value: 33.84624322066173
1642
+ - task:
1643
+ type: Retrieval
1644
+ dataset:
1645
+ type: nfcorpus
1646
+ name: MTEB NFCorpus
1647
+ config: default
1648
+ split: test
1649
+ revision: None
1650
+ metrics:
1651
+ - type: map_at_1
1652
+ value: 6.462
1653
+ - type: map_at_10
1654
+ value: 14.947
1655
+ - type: map_at_100
1656
+ value: 19.344
1657
+ - type: map_at_1000
1658
+ value: 20.933
1659
+ - type: map_at_3
1660
+ value: 10.761999999999999
1661
+ - type: map_at_5
1662
+ value: 12.744
1663
+ - type: mrr_at_1
1664
+ value: 47.988
1665
+ - type: mrr_at_10
1666
+ value: 57.365
1667
+ - type: mrr_at_100
1668
+ value: 57.931
1669
+ - type: mrr_at_1000
1670
+ value: 57.96
1671
+ - type: mrr_at_3
1672
+ value: 54.85
1673
+ - type: mrr_at_5
1674
+ value: 56.569
1675
+ - type: ndcg_at_1
1676
+ value: 46.129999999999995
1677
+ - type: ndcg_at_10
1678
+ value: 38.173
1679
+ - type: ndcg_at_100
1680
+ value: 35.983
1681
+ - type: ndcg_at_1000
1682
+ value: 44.507000000000005
1683
+ - type: ndcg_at_3
1684
+ value: 42.495
1685
+ - type: ndcg_at_5
1686
+ value: 41.019
1687
+ - type: precision_at_1
1688
+ value: 47.678
1689
+ - type: precision_at_10
1690
+ value: 28.731
1691
+ - type: precision_at_100
1692
+ value: 9.232
1693
+ - type: precision_at_1000
1694
+ value: 2.202
1695
+ - type: precision_at_3
1696
+ value: 39.628
1697
+ - type: precision_at_5
1698
+ value: 35.851
1699
+ - type: recall_at_1
1700
+ value: 6.462
1701
+ - type: recall_at_10
1702
+ value: 18.968
1703
+ - type: recall_at_100
1704
+ value: 37.131
1705
+ - type: recall_at_1000
1706
+ value: 67.956
1707
+ - type: recall_at_3
1708
+ value: 11.905000000000001
1709
+ - type: recall_at_5
1710
+ value: 15.097
1711
+ - task:
1712
+ type: Retrieval
1713
+ dataset:
1714
+ type: nq
1715
+ name: MTEB NQ
1716
+ config: default
1717
+ split: test
1718
+ revision: None
1719
+ metrics:
1720
+ - type: map_at_1
1721
+ value: 30.335
1722
+ - type: map_at_10
1723
+ value: 46.611999999999995
1724
+ - type: map_at_100
1725
+ value: 47.632000000000005
1726
+ - type: map_at_1000
1727
+ value: 47.661
1728
+ - type: map_at_3
1729
+ value: 41.876999999999995
1730
+ - type: map_at_5
1731
+ value: 44.799
1732
+ - type: mrr_at_1
1733
+ value: 34.125
1734
+ - type: mrr_at_10
1735
+ value: 49.01
1736
+ - type: mrr_at_100
1737
+ value: 49.75
1738
+ - type: mrr_at_1000
1739
+ value: 49.768
1740
+ - type: mrr_at_3
1741
+ value: 45.153
1742
+ - type: mrr_at_5
1743
+ value: 47.589999999999996
1744
+ - type: ndcg_at_1
1745
+ value: 34.125
1746
+ - type: ndcg_at_10
1747
+ value: 54.777
1748
+ - type: ndcg_at_100
1749
+ value: 58.914
1750
+ - type: ndcg_at_1000
1751
+ value: 59.521
1752
+ - type: ndcg_at_3
1753
+ value: 46.015
1754
+ - type: ndcg_at_5
1755
+ value: 50.861000000000004
1756
+ - type: precision_at_1
1757
+ value: 34.125
1758
+ - type: precision_at_10
1759
+ value: 9.166
1760
+ - type: precision_at_100
1761
+ value: 1.149
1762
+ - type: precision_at_1000
1763
+ value: 0.121
1764
+ - type: precision_at_3
1765
+ value: 21.147
1766
+ - type: precision_at_5
1767
+ value: 15.469
1768
+ - type: recall_at_1
1769
+ value: 30.335
1770
+ - type: recall_at_10
1771
+ value: 77.194
1772
+ - type: recall_at_100
1773
+ value: 94.812
1774
+ - type: recall_at_1000
1775
+ value: 99.247
1776
+ - type: recall_at_3
1777
+ value: 54.681000000000004
1778
+ - type: recall_at_5
1779
+ value: 65.86800000000001
1780
+ - task:
1781
+ type: Retrieval
1782
+ dataset:
1783
+ type: quora
1784
+ name: MTEB QuoraRetrieval
1785
+ config: default
1786
+ split: test
1787
+ revision: None
1788
+ metrics:
1789
+ - type: map_at_1
1790
+ value: 70.62
1791
+ - type: map_at_10
1792
+ value: 84.536
1793
+ - type: map_at_100
1794
+ value: 85.167
1795
+ - type: map_at_1000
1796
+ value: 85.184
1797
+ - type: map_at_3
1798
+ value: 81.607
1799
+ - type: map_at_5
1800
+ value: 83.423
1801
+ - type: mrr_at_1
1802
+ value: 81.36
1803
+ - type: mrr_at_10
1804
+ value: 87.506
1805
+ - type: mrr_at_100
1806
+ value: 87.601
1807
+ - type: mrr_at_1000
1808
+ value: 87.601
1809
+ - type: mrr_at_3
1810
+ value: 86.503
1811
+ - type: mrr_at_5
1812
+ value: 87.179
1813
+ - type: ndcg_at_1
1814
+ value: 81.36
1815
+ - type: ndcg_at_10
1816
+ value: 88.319
1817
+ - type: ndcg_at_100
1818
+ value: 89.517
1819
+ - type: ndcg_at_1000
1820
+ value: 89.60900000000001
1821
+ - type: ndcg_at_3
1822
+ value: 85.423
1823
+ - type: ndcg_at_5
1824
+ value: 86.976
1825
+ - type: precision_at_1
1826
+ value: 81.36
1827
+ - type: precision_at_10
1828
+ value: 13.415
1829
+ - type: precision_at_100
1830
+ value: 1.529
1831
+ - type: precision_at_1000
1832
+ value: 0.157
1833
+ - type: precision_at_3
1834
+ value: 37.342999999999996
1835
+ - type: precision_at_5
1836
+ value: 24.534
1837
+ - type: recall_at_1
1838
+ value: 70.62
1839
+ - type: recall_at_10
1840
+ value: 95.57600000000001
1841
+ - type: recall_at_100
1842
+ value: 99.624
1843
+ - type: recall_at_1000
1844
+ value: 99.991
1845
+ - type: recall_at_3
1846
+ value: 87.22
1847
+ - type: recall_at_5
1848
+ value: 91.654
1849
+ - task:
1850
+ type: Clustering
1851
+ dataset:
1852
+ type: mteb/reddit-clustering
1853
+ name: MTEB RedditClustering
1854
+ config: default
1855
+ split: test
1856
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1857
+ metrics:
1858
+ - type: v_measure
1859
+ value: 60.826438478212744
1860
+ - task:
1861
+ type: Clustering
1862
+ dataset:
1863
+ type: mteb/reddit-clustering-p2p
1864
+ name: MTEB RedditClusteringP2P
1865
+ config: default
1866
+ split: test
1867
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1868
+ metrics:
1869
+ - type: v_measure
1870
+ value: 64.24027467551447
1871
+ - task:
1872
+ type: Retrieval
1873
+ dataset:
1874
+ type: scidocs
1875
+ name: MTEB SCIDOCS
1876
+ config: default
1877
+ split: test
1878
+ revision: None
1879
+ metrics:
1880
+ - type: map_at_1
1881
+ value: 4.997999999999999
1882
+ - type: map_at_10
1883
+ value: 14.267
1884
+ - type: map_at_100
1885
+ value: 16.843
1886
+ - type: map_at_1000
1887
+ value: 17.229
1888
+ - type: map_at_3
1889
+ value: 9.834
1890
+ - type: map_at_5
1891
+ value: 11.92
1892
+ - type: mrr_at_1
1893
+ value: 24.7
1894
+ - type: mrr_at_10
1895
+ value: 37.685
1896
+ - type: mrr_at_100
1897
+ value: 38.704
1898
+ - type: mrr_at_1000
1899
+ value: 38.747
1900
+ - type: mrr_at_3
1901
+ value: 34.150000000000006
1902
+ - type: mrr_at_5
1903
+ value: 36.075
1904
+ - type: ndcg_at_1
1905
+ value: 24.7
1906
+ - type: ndcg_at_10
1907
+ value: 23.44
1908
+ - type: ndcg_at_100
1909
+ value: 32.617000000000004
1910
+ - type: ndcg_at_1000
1911
+ value: 38.628
1912
+ - type: ndcg_at_3
1913
+ value: 21.747
1914
+ - type: ndcg_at_5
1915
+ value: 19.076
1916
+ - type: precision_at_1
1917
+ value: 24.7
1918
+ - type: precision_at_10
1919
+ value: 12.47
1920
+ - type: precision_at_100
1921
+ value: 2.564
1922
+ - type: precision_at_1000
1923
+ value: 0.4
1924
+ - type: precision_at_3
1925
+ value: 20.767
1926
+ - type: precision_at_5
1927
+ value: 17.06
1928
+ - type: recall_at_1
1929
+ value: 4.997999999999999
1930
+ - type: recall_at_10
1931
+ value: 25.3
1932
+ - type: recall_at_100
1933
+ value: 52.048
1934
+ - type: recall_at_1000
1935
+ value: 81.093
1936
+ - type: recall_at_3
1937
+ value: 12.642999999999999
1938
+ - type: recall_at_5
1939
+ value: 17.312
1940
+ - task:
1941
+ type: STS
1942
+ dataset:
1943
+ type: mteb/sickr-sts
1944
+ name: MTEB SICK-R
1945
+ config: default
1946
+ split: test
1947
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1948
+ metrics:
1949
+ - type: cos_sim_pearson
1950
+ value: 85.44942006292234
1951
+ - type: cos_sim_spearman
1952
+ value: 79.80930790660699
1953
+ - type: euclidean_pearson
1954
+ value: 82.93400777494863
1955
+ - type: euclidean_spearman
1956
+ value: 80.04664991110705
1957
+ - type: manhattan_pearson
1958
+ value: 82.93551681854949
1959
+ - type: manhattan_spearman
1960
+ value: 80.03156736837379
1961
+ - task:
1962
+ type: STS
1963
+ dataset:
1964
+ type: mteb/sts12-sts
1965
+ name: MTEB STS12
1966
+ config: default
1967
+ split: test
1968
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1969
+ metrics:
1970
+ - type: cos_sim_pearson
1971
+ value: 85.63574059135726
1972
+ - type: cos_sim_spearman
1973
+ value: 76.80552915288186
1974
+ - type: euclidean_pearson
1975
+ value: 82.46368529820518
1976
+ - type: euclidean_spearman
1977
+ value: 76.60338474719275
1978
+ - type: manhattan_pearson
1979
+ value: 82.4558617035968
1980
+ - type: manhattan_spearman
1981
+ value: 76.57936082895705
1982
+ - task:
1983
+ type: STS
1984
+ dataset:
1985
+ type: mteb/sts13-sts
1986
+ name: MTEB STS13
1987
+ config: default
1988
+ split: test
1989
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1990
+ metrics:
1991
+ - type: cos_sim_pearson
1992
+ value: 86.24116811084211
1993
+ - type: cos_sim_spearman
1994
+ value: 88.10998662068769
1995
+ - type: euclidean_pearson
1996
+ value: 87.04961732352689
1997
+ - type: euclidean_spearman
1998
+ value: 88.12543945864087
1999
+ - type: manhattan_pearson
2000
+ value: 86.9905224528854
2001
+ - type: manhattan_spearman
2002
+ value: 88.07827944705546
2003
+ - task:
2004
+ type: STS
2005
+ dataset:
2006
+ type: mteb/sts14-sts
2007
+ name: MTEB STS14
2008
+ config: default
2009
+ split: test
2010
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2011
+ metrics:
2012
+ - type: cos_sim_pearson
2013
+ value: 84.74847296555048
2014
+ - type: cos_sim_spearman
2015
+ value: 82.66200957916445
2016
+ - type: euclidean_pearson
2017
+ value: 84.48132256004965
2018
+ - type: euclidean_spearman
2019
+ value: 82.67915286000596
2020
+ - type: manhattan_pearson
2021
+ value: 84.44950477268334
2022
+ - type: manhattan_spearman
2023
+ value: 82.63327639173352
2024
+ - task:
2025
+ type: STS
2026
+ dataset:
2027
+ type: mteb/sts15-sts
2028
+ name: MTEB STS15
2029
+ config: default
2030
+ split: test
2031
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2032
+ metrics:
2033
+ - type: cos_sim_pearson
2034
+ value: 87.23056258027053
2035
+ - type: cos_sim_spearman
2036
+ value: 88.92791680286955
2037
+ - type: euclidean_pearson
2038
+ value: 88.13819235461933
2039
+ - type: euclidean_spearman
2040
+ value: 88.87294661361716
2041
+ - type: manhattan_pearson
2042
+ value: 88.14212133687899
2043
+ - type: manhattan_spearman
2044
+ value: 88.88551854529777
2045
+ - task:
2046
+ type: STS
2047
+ dataset:
2048
+ type: mteb/sts16-sts
2049
+ name: MTEB STS16
2050
+ config: default
2051
+ split: test
2052
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2053
+ metrics:
2054
+ - type: cos_sim_pearson
2055
+ value: 82.64179522732887
2056
+ - type: cos_sim_spearman
2057
+ value: 84.25028809903114
2058
+ - type: euclidean_pearson
2059
+ value: 83.40175015236979
2060
+ - type: euclidean_spearman
2061
+ value: 84.23369296429406
2062
+ - type: manhattan_pearson
2063
+ value: 83.43768174261321
2064
+ - type: manhattan_spearman
2065
+ value: 84.27855229214734
2066
+ - task:
2067
+ type: STS
2068
+ dataset:
2069
+ type: mteb/sts17-crosslingual-sts
2070
+ name: MTEB STS17 (en-en)
2071
+ config: en-en
2072
+ split: test
2073
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2074
+ metrics:
2075
+ - type: cos_sim_pearson
2076
+ value: 88.20378955494732
2077
+ - type: cos_sim_spearman
2078
+ value: 88.46863559173111
2079
+ - type: euclidean_pearson
2080
+ value: 88.8249295811663
2081
+ - type: euclidean_spearman
2082
+ value: 88.6312737724905
2083
+ - type: manhattan_pearson
2084
+ value: 88.87744466378827
2085
+ - type: manhattan_spearman
2086
+ value: 88.82908423767314
2087
+ - task:
2088
+ type: STS
2089
+ dataset:
2090
+ type: mteb/sts22-crosslingual-sts
2091
+ name: MTEB STS22 (en)
2092
+ config: en
2093
+ split: test
2094
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2095
+ metrics:
2096
+ - type: cos_sim_pearson
2097
+ value: 69.91342028796086
2098
+ - type: cos_sim_spearman
2099
+ value: 69.71495021867864
2100
+ - type: euclidean_pearson
2101
+ value: 70.65334330405646
2102
+ - type: euclidean_spearman
2103
+ value: 69.4321253472211
2104
+ - type: manhattan_pearson
2105
+ value: 70.59743494727465
2106
+ - type: manhattan_spearman
2107
+ value: 69.11695509297482
2108
+ - task:
2109
+ type: STS
2110
+ dataset:
2111
+ type: mteb/stsbenchmark-sts
2112
+ name: MTEB STSBenchmark
2113
+ config: default
2114
+ split: test
2115
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2116
+ metrics:
2117
+ - type: cos_sim_pearson
2118
+ value: 85.42451709766952
2119
+ - type: cos_sim_spearman
2120
+ value: 86.07166710670508
2121
+ - type: euclidean_pearson
2122
+ value: 86.12711421258899
2123
+ - type: euclidean_spearman
2124
+ value: 86.05232086925126
2125
+ - type: manhattan_pearson
2126
+ value: 86.15591089932126
2127
+ - type: manhattan_spearman
2128
+ value: 86.0890128623439
2129
+ - task:
2130
+ type: Reranking
2131
+ dataset:
2132
+ type: mteb/scidocs-reranking
2133
+ name: MTEB SciDocsRR
2134
+ config: default
2135
+ split: test
2136
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2137
+ metrics:
2138
+ - type: map
2139
+ value: 87.1976344717285
2140
+ - type: mrr
2141
+ value: 96.3703145075694
2142
+ - task:
2143
+ type: Retrieval
2144
+ dataset:
2145
+ type: scifact
2146
+ name: MTEB SciFact
2147
+ config: default
2148
+ split: test
2149
+ revision: None
2150
+ metrics:
2151
+ - type: map_at_1
2152
+ value: 59.511
2153
+ - type: map_at_10
2154
+ value: 69.724
2155
+ - type: map_at_100
2156
+ value: 70.208
2157
+ - type: map_at_1000
2158
+ value: 70.22800000000001
2159
+ - type: map_at_3
2160
+ value: 66.986
2161
+ - type: map_at_5
2162
+ value: 68.529
2163
+ - type: mrr_at_1
2164
+ value: 62.333000000000006
2165
+ - type: mrr_at_10
2166
+ value: 70.55
2167
+ - type: mrr_at_100
2168
+ value: 70.985
2169
+ - type: mrr_at_1000
2170
+ value: 71.004
2171
+ - type: mrr_at_3
2172
+ value: 68.611
2173
+ - type: mrr_at_5
2174
+ value: 69.728
2175
+ - type: ndcg_at_1
2176
+ value: 62.333000000000006
2177
+ - type: ndcg_at_10
2178
+ value: 74.265
2179
+ - type: ndcg_at_100
2180
+ value: 76.361
2181
+ - type: ndcg_at_1000
2182
+ value: 76.82900000000001
2183
+ - type: ndcg_at_3
2184
+ value: 69.772
2185
+ - type: ndcg_at_5
2186
+ value: 71.94800000000001
2187
+ - type: precision_at_1
2188
+ value: 62.333000000000006
2189
+ - type: precision_at_10
2190
+ value: 9.9
2191
+ - type: precision_at_100
2192
+ value: 1.093
2193
+ - type: precision_at_1000
2194
+ value: 0.11299999999999999
2195
+ - type: precision_at_3
2196
+ value: 27.444000000000003
2197
+ - type: precision_at_5
2198
+ value: 18
2199
+ - type: recall_at_1
2200
+ value: 59.511
2201
+ - type: recall_at_10
2202
+ value: 87.156
2203
+ - type: recall_at_100
2204
+ value: 96.5
2205
+ - type: recall_at_1000
2206
+ value: 100
2207
+ - type: recall_at_3
2208
+ value: 75.2
2209
+ - type: recall_at_5
2210
+ value: 80.661
2211
+ - task:
2212
+ type: PairClassification
2213
+ dataset:
2214
+ type: mteb/sprintduplicatequestions-pairclassification
2215
+ name: MTEB SprintDuplicateQuestions
2216
+ config: default
2217
+ split: test
2218
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2219
+ metrics:
2220
+ - type: cos_sim_accuracy
2221
+ value: 99.81683168316832
2222
+ - type: cos_sim_ap
2223
+ value: 95.74716566563774
2224
+ - type: cos_sim_f1
2225
+ value: 90.64238745574103
2226
+ - type: cos_sim_precision
2227
+ value: 91.7093142272262
2228
+ - type: cos_sim_recall
2229
+ value: 89.60000000000001
2230
+ - type: dot_accuracy
2231
+ value: 99.69405940594059
2232
+ - type: dot_ap
2233
+ value: 91.09013507754594
2234
+ - type: dot_f1
2235
+ value: 84.54227113556779
2236
+ - type: dot_precision
2237
+ value: 84.58458458458459
2238
+ - type: dot_recall
2239
+ value: 84.5
2240
+ - type: euclidean_accuracy
2241
+ value: 99.81782178217821
2242
+ - type: euclidean_ap
2243
+ value: 95.6324301072609
2244
+ - type: euclidean_f1
2245
+ value: 90.58341862845445
2246
+ - type: euclidean_precision
2247
+ value: 92.76729559748428
2248
+ - type: euclidean_recall
2249
+ value: 88.5
2250
+ - type: manhattan_accuracy
2251
+ value: 99.81980198019802
2252
+ - type: manhattan_ap
2253
+ value: 95.68510494437183
2254
+ - type: manhattan_f1
2255
+ value: 90.58945191313342
2256
+ - type: manhattan_precision
2257
+ value: 93.79014989293361
2258
+ - type: manhattan_recall
2259
+ value: 87.6
2260
+ - type: max_accuracy
2261
+ value: 99.81980198019802
2262
+ - type: max_ap
2263
+ value: 95.74716566563774
2264
+ - type: max_f1
2265
+ value: 90.64238745574103
2266
+ - task:
2267
+ type: Clustering
2268
+ dataset:
2269
+ type: mteb/stackexchange-clustering
2270
+ name: MTEB StackExchangeClustering
2271
+ config: default
2272
+ split: test
2273
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2274
+ metrics:
2275
+ - type: v_measure
2276
+ value: 67.63761899427078
2277
+ - task:
2278
+ type: Clustering
2279
+ dataset:
2280
+ type: mteb/stackexchange-clustering-p2p
2281
+ name: MTEB StackExchangeClusteringP2P
2282
+ config: default
2283
+ split: test
2284
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2285
+ metrics:
2286
+ - type: v_measure
2287
+ value: 36.572473369697235
2288
+ - task:
2289
+ type: Reranking
2290
+ dataset:
2291
+ type: mteb/stackoverflowdupquestions-reranking
2292
+ name: MTEB StackOverflowDupQuestions
2293
+ config: default
2294
+ split: test
2295
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2296
+ metrics:
2297
+ - type: map
2298
+ value: 53.63000245208579
2299
+ - type: mrr
2300
+ value: 54.504193722943725
2301
+ - task:
2302
+ type: Summarization
2303
+ dataset:
2304
+ type: mteb/summeval
2305
+ name: MTEB SummEval
2306
+ config: default
2307
+ split: test
2308
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2309
+ metrics:
2310
+ - type: cos_sim_pearson
2311
+ value: 30.300791939416545
2312
+ - type: cos_sim_spearman
2313
+ value: 31.662904057924123
2314
+ - type: dot_pearson
2315
+ value: 26.21198530758316
2316
+ - type: dot_spearman
2317
+ value: 27.006921548904263
2318
+ - task:
2319
+ type: Retrieval
2320
+ dataset:
2321
+ type: trec-covid
2322
+ name: MTEB TRECCOVID
2323
+ config: default
2324
+ split: test
2325
+ revision: None
2326
+ metrics:
2327
+ - type: map_at_1
2328
+ value: 0.197
2329
+ - type: map_at_10
2330
+ value: 1.752
2331
+ - type: map_at_100
2332
+ value: 10.795
2333
+ - type: map_at_1000
2334
+ value: 27.18
2335
+ - type: map_at_3
2336
+ value: 0.5890000000000001
2337
+ - type: map_at_5
2338
+ value: 0.938
2339
+ - type: mrr_at_1
2340
+ value: 74
2341
+ - type: mrr_at_10
2342
+ value: 85.833
2343
+ - type: mrr_at_100
2344
+ value: 85.833
2345
+ - type: mrr_at_1000
2346
+ value: 85.833
2347
+ - type: mrr_at_3
2348
+ value: 85.333
2349
+ - type: mrr_at_5
2350
+ value: 85.833
2351
+ - type: ndcg_at_1
2352
+ value: 69
2353
+ - type: ndcg_at_10
2354
+ value: 70.22
2355
+ - type: ndcg_at_100
2356
+ value: 55.785
2357
+ - type: ndcg_at_1000
2358
+ value: 52.93600000000001
2359
+ - type: ndcg_at_3
2360
+ value: 72.084
2361
+ - type: ndcg_at_5
2362
+ value: 71.184
2363
+ - type: precision_at_1
2364
+ value: 74
2365
+ - type: precision_at_10
2366
+ value: 75.2
2367
+ - type: precision_at_100
2368
+ value: 57.3
2369
+ - type: precision_at_1000
2370
+ value: 23.302
2371
+ - type: precision_at_3
2372
+ value: 77.333
2373
+ - type: precision_at_5
2374
+ value: 75.6
2375
+ - type: recall_at_1
2376
+ value: 0.197
2377
+ - type: recall_at_10
2378
+ value: 2.019
2379
+ - type: recall_at_100
2380
+ value: 14.257
2381
+ - type: recall_at_1000
2382
+ value: 50.922
2383
+ - type: recall_at_3
2384
+ value: 0.642
2385
+ - type: recall_at_5
2386
+ value: 1.043
2387
+ - task:
2388
+ type: Retrieval
2389
+ dataset:
2390
+ type: webis-touche2020
2391
+ name: MTEB Touche2020
2392
+ config: default
2393
+ split: test
2394
+ revision: None
2395
+ metrics:
2396
+ - type: map_at_1
2397
+ value: 2.803
2398
+ - type: map_at_10
2399
+ value: 10.407
2400
+ - type: map_at_100
2401
+ value: 16.948
2402
+ - type: map_at_1000
2403
+ value: 18.424
2404
+ - type: map_at_3
2405
+ value: 5.405
2406
+ - type: map_at_5
2407
+ value: 6.908
2408
+ - type: mrr_at_1
2409
+ value: 36.735
2410
+ - type: mrr_at_10
2411
+ value: 50.221000000000004
2412
+ - type: mrr_at_100
2413
+ value: 51.388
2414
+ - type: mrr_at_1000
2415
+ value: 51.402
2416
+ - type: mrr_at_3
2417
+ value: 47.278999999999996
2418
+ - type: mrr_at_5
2419
+ value: 49.626
2420
+ - type: ndcg_at_1
2421
+ value: 34.694
2422
+ - type: ndcg_at_10
2423
+ value: 25.507
2424
+ - type: ndcg_at_100
2425
+ value: 38.296
2426
+ - type: ndcg_at_1000
2427
+ value: 49.492000000000004
2428
+ - type: ndcg_at_3
2429
+ value: 29.006999999999998
2430
+ - type: ndcg_at_5
2431
+ value: 25.979000000000003
2432
+ - type: precision_at_1
2433
+ value: 36.735
2434
+ - type: precision_at_10
2435
+ value: 22.041
2436
+ - type: precision_at_100
2437
+ value: 8.02
2438
+ - type: precision_at_1000
2439
+ value: 1.567
2440
+ - type: precision_at_3
2441
+ value: 28.571
2442
+ - type: precision_at_5
2443
+ value: 24.490000000000002
2444
+ - type: recall_at_1
2445
+ value: 2.803
2446
+ - type: recall_at_10
2447
+ value: 16.378
2448
+ - type: recall_at_100
2449
+ value: 50.489
2450
+ - type: recall_at_1000
2451
+ value: 85.013
2452
+ - type: recall_at_3
2453
+ value: 6.505
2454
+ - type: recall_at_5
2455
+ value: 9.243
2456
+ - task:
2457
+ type: Classification
2458
+ dataset:
2459
+ type: mteb/toxic_conversations_50k
2460
+ name: MTEB ToxicConversationsClassification
2461
+ config: default
2462
+ split: test
2463
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2464
+ metrics:
2465
+ - type: accuracy
2466
+ value: 70.55579999999999
2467
+ - type: ap
2468
+ value: 14.206982753316227
2469
+ - type: f1
2470
+ value: 54.372142814964285
2471
+ - task:
2472
+ type: Classification
2473
+ dataset:
2474
+ type: mteb/tweet_sentiment_extraction
2475
+ name: MTEB TweetSentimentExtractionClassification
2476
+ config: default
2477
+ split: test
2478
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2479
+ metrics:
2480
+ - type: accuracy
2481
+ value: 56.57611771363893
2482
+ - type: f1
2483
+ value: 56.924172639063144
2484
+ - task:
2485
+ type: Clustering
2486
+ dataset:
2487
+ type: mteb/twentynewsgroups-clustering
2488
+ name: MTEB TwentyNewsgroupsClustering
2489
+ config: default
2490
+ split: test
2491
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2492
+ metrics:
2493
+ - type: v_measure
2494
+ value: 52.82304915719759
2495
+ - task:
2496
+ type: PairClassification
2497
+ dataset:
2498
+ type: mteb/twittersemeval2015-pairclassification
2499
+ name: MTEB TwitterSemEval2015
2500
+ config: default
2501
+ split: test
2502
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2503
+ metrics:
2504
+ - type: cos_sim_accuracy
2505
+ value: 85.92716218632653
2506
+ - type: cos_sim_ap
2507
+ value: 73.73359122546046
2508
+ - type: cos_sim_f1
2509
+ value: 68.42559487116262
2510
+ - type: cos_sim_precision
2511
+ value: 64.22124508215691
2512
+ - type: cos_sim_recall
2513
+ value: 73.21899736147758
2514
+ - type: dot_accuracy
2515
+ value: 80.38981939560112
2516
+ - type: dot_ap
2517
+ value: 54.61060862444974
2518
+ - type: dot_f1
2519
+ value: 53.45710627400769
2520
+ - type: dot_precision
2521
+ value: 44.87638839125761
2522
+ - type: dot_recall
2523
+ value: 66.09498680738787
2524
+ - type: euclidean_accuracy
2525
+ value: 86.02849138701794
2526
+ - type: euclidean_ap
2527
+ value: 73.95673761922404
2528
+ - type: euclidean_f1
2529
+ value: 68.6783042394015
2530
+ - type: euclidean_precision
2531
+ value: 65.1063829787234
2532
+ - type: euclidean_recall
2533
+ value: 72.66490765171504
2534
+ - type: manhattan_accuracy
2535
+ value: 85.9808070572808
2536
+ - type: manhattan_ap
2537
+ value: 73.9050720058029
2538
+ - type: manhattan_f1
2539
+ value: 68.57560618983794
2540
+ - type: manhattan_precision
2541
+ value: 63.70839936608558
2542
+ - type: manhattan_recall
2543
+ value: 74.24802110817942
2544
+ - type: max_accuracy
2545
+ value: 86.02849138701794
2546
+ - type: max_ap
2547
+ value: 73.95673761922404
2548
+ - type: max_f1
2549
+ value: 68.6783042394015
2550
+ - task:
2551
+ type: PairClassification
2552
+ dataset:
2553
+ type: mteb/twitterurlcorpus-pairclassification
2554
+ name: MTEB TwitterURLCorpus
2555
+ config: default
2556
+ split: test
2557
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2558
+ metrics:
2559
+ - type: cos_sim_accuracy
2560
+ value: 88.72783017037295
2561
+ - type: cos_sim_ap
2562
+ value: 85.52705223340233
2563
+ - type: cos_sim_f1
2564
+ value: 77.91659078492079
2565
+ - type: cos_sim_precision
2566
+ value: 73.93378032764221
2567
+ - type: cos_sim_recall
2568
+ value: 82.35294117647058
2569
+ - type: dot_accuracy
2570
+ value: 85.41739434159972
2571
+ - type: dot_ap
2572
+ value: 77.17734818118443
2573
+ - type: dot_f1
2574
+ value: 71.63473589973144
2575
+ - type: dot_precision
2576
+ value: 66.96123719622415
2577
+ - type: dot_recall
2578
+ value: 77.00954727440714
2579
+ - type: euclidean_accuracy
2580
+ value: 88.68125897465751
2581
+ - type: euclidean_ap
2582
+ value: 85.47712213906692
2583
+ - type: euclidean_f1
2584
+ value: 77.81419950830664
2585
+ - type: euclidean_precision
2586
+ value: 75.37162649733006
2587
+ - type: euclidean_recall
2588
+ value: 80.42038805050817
2589
+ - type: manhattan_accuracy
2590
+ value: 88.67349710870494
2591
+ - type: manhattan_ap
2592
+ value: 85.46506475241955
2593
+ - type: manhattan_f1
2594
+ value: 77.87259084890393
2595
+ - type: manhattan_precision
2596
+ value: 74.54929577464789
2597
+ - type: manhattan_recall
2598
+ value: 81.50600554357868
2599
+ - type: max_accuracy
2600
+ value: 88.72783017037295
2601
+ - type: max_ap
2602
+ value: 85.52705223340233
2603
+ - type: max_f1
2604
+ value: 77.91659078492079
2605
+ language:
2606
+ - en
2607
+ license: mit
2608
+ ---
2609
+ # # Fast-Inference with Ctranslate2
2610
+ Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
2611
+
2612
+ quantized version of [thenlper/gte-large](https://huggingface.co/thenlper/gte-large)
2613
+ ```bash
2614
+ pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.17.1
2615
+ ```
2616
+
2617
+ ```python
2618
+ # from transformers import AutoTokenizer
2619
+ model_name = "michaelfeil/ct2fast-gte-large"
2620
+ model_name_orig="thenlper/gte-large"
2621
+
2622
+ from hf_hub_ctranslate2 import EncoderCT2fromHfHub
2623
+ model = EncoderCT2fromHfHub(
2624
+ # load in int8 on CUDA
2625
+ model_name_or_path=model_name,
2626
+ device="cuda",
2627
+ compute_type="int8_float16"
2628
+ )
2629
+ outputs = model.generate(
2630
+ text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
2631
+ max_length=64,
2632
+ ) # perform downstream tasks on outputs
2633
+ outputs["pooler_output"]
2634
+ outputs["last_hidden_state"]
2635
+ outputs["attention_mask"]
2636
+
2637
+ # alternative, use SentenceTransformer Mix-In
2638
+ # for end-to-end Sentence embeddings generation
2639
+ # (not pulling from this CT2fast-HF repo)
2640
+
2641
+ from hf_hub_ctranslate2 import CT2SentenceTransformer
2642
+ model = CT2SentenceTransformer(
2643
+ model_name_orig, compute_type="int8_float16", device="cuda"
2644
+ )
2645
+ embeddings = model.encode(
2646
+ ["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
2647
+ batch_size=32,
2648
+ convert_to_numpy=True,
2649
+ normalize_embeddings=True,
2650
+ )
2651
+ print(embeddings.shape, embeddings)
2652
+ scores = (embeddings @ embeddings.T) * 100
2653
+
2654
+ # Hint: you can also host this code via REST API and
2655
+ # via github.com/michaelfeil/infinity
2656
+
2657
+
2658
+ ```
2659
+
2660
+ Checkpoint compatible to [ctranslate2>=3.17.1](https://github.com/OpenNMT/CTranslate2)
2661
+ and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2)
2662
+ - `compute_type=int8_float16` for `device="cuda"`
2663
+ - `compute_type=int8` for `device="cpu"`
2664
+
2665
+ Converted on 2023-10-13 using
2666
+ ```
2667
+ LLama-2 -> removed <pad> token.
2668
+ ```
2669
+
2670
+ # Licence and other remarks:
2671
+ This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
2672
+
2673
+ # Original description
2674
+
2675
+
2676
+ # gte-large
2677
+
2678
+ General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281)
2679
+
2680
+ The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large](https://huggingface.co/thenlper/gte-large), [GTE-base](https://huggingface.co/thenlper/gte-base), and [GTE-small](https://huggingface.co/thenlper/gte-small). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc.
2681
+
2682
+ ## Metrics
2683
+
2684
+ We compared the performance of the GTE models with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
2685
+
2686
+
2687
+
2688
+ | Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) |
2689
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
2690
+ | [**gte-large**](https://huggingface.co/thenlper/gte-large) | 0.67 | 1024 | 512 | **63.13** | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 |
2691
+ | [**gte-base**](https://huggingface.co/thenlper/gte-base) | 0.22 | 768 | 512 | **62.39** | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 |
2692
+ | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1.34 | 1024| 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 |
2693
+ | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 |
2694
+ | [**gte-small**](https://huggingface.co/thenlper/gte-small) | 0.07 | 384 | 512 | **61.36** | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 |
2695
+ | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 |
2696
+ | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 |
2697
+ | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 |
2698
+ | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 |
2699
+ | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 |
2700
+ | [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 |
2701
+ | [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 |
2702
+ | [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 |
2703
+ | [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 |
2704
+
2705
+
2706
+ ## Usage
2707
+
2708
+ Code example
2709
+
2710
+ ```python
2711
+ import torch.nn.functional as F
2712
+ from torch import Tensor
2713
+ from transformers import AutoTokenizer, AutoModel
2714
+
2715
+ def average_pool(last_hidden_states: Tensor,
2716
+ attention_mask: Tensor) -> Tensor:
2717
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
2718
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
2719
+
2720
+ input_texts = [
2721
+ "what is the capital of China?",
2722
+ "how to implement quick sort in python?",
2723
+ "Beijing",
2724
+ "sorting algorithms"
2725
+ ]
2726
+
2727
+ tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-large")
2728
+ model = AutoModel.from_pretrained("thenlper/gte-large")
2729
+
2730
+ # Tokenize the input texts
2731
+ batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
2732
+
2733
+ outputs = model(**batch_dict)
2734
+ embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
2735
+
2736
+ # (Optionally) normalize embeddings
2737
+ embeddings = F.normalize(embeddings, p=2, dim=1)
2738
+ scores = (embeddings[:1] @ embeddings[1:].T) * 100
2739
+ print(scores.tolist())
2740
+ ```
2741
+
2742
+ Use with sentence-transformers:
2743
+ ```python
2744
+ from sentence_transformers import SentenceTransformer
2745
+ from sentence_transformers.util import cos_sim
2746
+
2747
+ sentences = ['That is a happy person', 'That is a very happy person']
2748
+
2749
+ model = SentenceTransformer('thenlper/gte-large')
2750
+ embeddings = model.encode(sentences)
2751
+ print(cos_sim(embeddings[0], embeddings[1]))
2752
+ ```
2753
+
2754
+ ### Limitation
2755
+
2756
+ This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
2757
+
2758
+ ### Citation
2759
+
2760
+ If you find our paper or models helpful, please consider citing them as follows:
2761
+
2762
+ ```
2763
+ @misc{li2023general,
2764
+ title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
2765
+ author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
2766
+ year={2023},
2767
+ eprint={2308.03281},
2768
+ archivePrefix={arXiv},
2769
+ primaryClass={cs.CL}
2770
+ }
2771
+ ```
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float16",
21
+ "transformers_version": "4.28.1",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522,
25
+ "bos_token": "<s>",
26
+ "eos_token": "</s>",
27
+ "layer_norm_epsilon": 1e-12,
28
+ "unk_token": "[UNK]"
29
+ }
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d88c41efc5727585fde7485ae15e9f847a60f7ae96eed73374760a2f88326169
3
+ size 670300108
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "clean_up_tokenization_spaces": true,
3
+ "cls_token": "[CLS]",
4
+ "do_lower_case": true,
5
+ "mask_token": "[MASK]",
6
+ "model_max_length": 1000000000000000019884624838656,
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "strip_accents": null,
10
+ "tokenize_chinese_chars": true,
11
+ "tokenizer_class": "BertTokenizer",
12
+ "unk_token": "[UNK]"
13
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
vocabulary.txt ADDED
The diff for this file is too large to render. See raw diff