Unable to load fine tuned model from local directory
Unable to load fine tuned model from local directory
Hello, I'm trying to finetune the florence-2-base-ft model from huggingface, for that, I use the following train function and save my finetuned model with the .save_pretrained()
method. Then, I would like to load this finetuned model with .from_pretrained()
method. However, I got an error message.
Steps to reproduce
Here is the train_model()
function that I use for finetuning the florence-2-base-ft model.
def train_model(train_loader, val_loader, model, processor, device, epochs=10, lr=1e-6):
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
num_training_steps = epochs * len(train_loader)
lr_scheduler = get_scheduler(
name="linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps,
)
for epoch in range(epochs):
model.train()
train_loss = 0
i = -1
for batch in tqdm(train_loader, desc=f"Training Epoch {epoch + 1}/{epochs}"):
i += 1
inputs, answers = batch
input_ids = inputs["input_ids"]
pixel_values = inputs["pixel_values"]
labels = processor.tokenizer(text=answers, return_tensors="pt", padding=True, return_token_type_ids=False).input_ids.to(device)
outputs = model(input_ids=input_ids, pixel_values=pixel_values, labels=labels)
loss = outputs.loss
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
train_loss += loss.item()
avg_train_loss = train_loss / len(train_loader)
print(f"Average Training Loss: {avg_train_loss}")
# Validation phase
model.eval()
val_loss = 0
with torch.no_grad():
for batch in tqdm(val_loader, desc=f"Validation Epoch {epoch + 1}/{epochs}"):
inputs, answers = batch
input_ids = inputs["input_ids"]
pixel_values = inputs["pixel_values"]
labels = processor.tokenizer(text=answers, return_tensors="pt", padding=True, return_token_type_ids=False).input_ids.to(device)
outputs = model(input_ids=input_ids, pixel_values=pixel_values, labels=labels)
loss = outputs.loss
val_loss += loss.item()
avg_val_loss = val_loss / len(val_loader)
print(f"Average Validation Loss: {avg_val_loss}")
# Save model checkpoint
output_dir = f"./model_checkpoints/epoch_{epoch+1}"
os.makedirs(output_dir, exist_ok=True)
model.save_pretrained(output_dir)
processor.save_pretrained(output_dir)
return model, processor
Then, to load my finetuned model, I do it like that :
model_finetuned = AutoModelForCausalLM.from_pretrained("./model_checkpoints/epoch_2", trust_remote_code=True)
Stacktrace
How can I solve this?
Did I do something wrong to save/load my model, or is it due to the fact that florence-2 was released recently?
Thanks in advance!
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
config.vision_config.model_type = "davit"
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
config=config,
).to(device)
processor = AutoProcessor.from_pretrained(
model_id, trust_remote_code=True, config=config
)
Change config when load model, maybe it can solve your problem.
It works ! thank you !
On using the processor using: processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, config=config), leads to the following error when loading:
" Can't instantiate a processor, a tokenizer, an image processor or a feature extractor for this model. Make sure the repository contains the files of at least one of those processing classes."
And the folder which is reading the files are made with self.model.save_pretrained(f"./models/microsoft/Florence-2-base") and it contains: config.json, generation_config.json, and a model.safetensors
Any help?
Hello, do you have a processor_config.json
or a preprocessor_config.json
file ? If that's not the case, maybe you forgot to save the processor:
model.save_pretrained(output_dir)
processor.save_pretrained(output_dir)