deberta-base / README.md
DeBERTa's picture
Update README.md
cb257fe
|
raw
history blame
1.31 kB
---
language: en
tags: deberta-v1
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
license: mit
---
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
#### Fine-tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks.
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m |
|-------------------|-----------|-----------|--------|
| RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 |
| XLNet-Large | -/- | -/80.2 | 86.8 |
| **DeBERTa-base** | 93.1/87.2 | 86.2/83.1 | 88.8 |
### Citation
If you find DeBERTa useful for your work, please cite the following paper:
``` latex
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
```