Edit model card

DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. It outperforms BERT and RoBERTa on majority of NLU tasks with 80GB training data.

Please check the official repository for more details and updates.

This the DeBERTa V2 XXLarge model fine-tuned with MNLI task, 48 layers, 1536 hidden size. Total parameters 1.5B.

Fine-tuning on NLU tasks

We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.

Model SQuAD 1.1 SQuAD 2.0 MNLI-m/mm SST-2 QNLI CoLA RTE MRPC QQP STS-B
F1/EM F1/EM Acc Acc Acc MCC Acc Acc/F1 Acc/F1 P/S
BERT-Large 90.9/84.1 81.8/79.0 86.6/- 93.2 92.3 60.6 70.4 88.0/- 91.3/- 90.0/-
RoBERTa-Large 94.6/88.9 89.4/86.5 90.2/- 96.4 93.9 68.0 86.6 90.9/- 92.2/- 92.4/-
XLNet-Large 95.1/89.7 90.6/87.9 90.8/- 97.0 94.9 69.0 85.9 90.8/- 92.3/- 92.5/-
DeBERTa-Large1 95.5/90.1 90.7/88.0 91.3/91.1 96.5 95.3 69.5 91.0 92.6/94.6 92.3/- 92.8/92.5
DeBERTa-XLarge1 -/- -/- 91.5/91.2 97.0 - - 93.1 92.1/94.3 - 92.9/92.7
DeBERTa-V2-XLarge1 95.8/90.8 91.4/88.9 91.7/91.6 97.5 95.8 71.1 93.9 92.0/94.2 92.3/89.8 92.9/92.9
DeBERTa-V2-XXLarge1,2 96.1/91.4 92.2/89.7 91.7/91.9 97.2 96.0 72.0 93.5 93.1/94.9 92.7/90.3 93.2/93.1

Notes.

Run with Deepspeed,

pip install datasets
pip install deepspeed

# Download the deepspeed config file
wget https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/ds_config.json -O ds_config.json

export TASK_NAME=rte
output_dir="ds_results"
num_gpus=8
batch_size=4
python -m torch.distributed.launch --nproc_per_node=${num_gpus} \\
  run_glue.py \\
  --model_name_or_path microsoft/deberta-v2-xxlarge-mnli \\
  --task_name $TASK_NAME \\
  --do_train \\
  --do_eval \\
  --max_seq_length 256 \\
  --per_device_train_batch_size ${batch_size} \\
  --learning_rate 3e-6 \\
  --num_train_epochs 3 \\
  --output_dir $output_dir \\
  --overwrite_output_dir \\
  --logging_steps 10 \\
  --logging_dir $output_dir \\
  --deepspeed ds_config.json

You can also run with --sharded_ddp

cd transformers/examples/text-classification/
export TASK_NAME=rte
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py   --model_name_or_path microsoft/deberta-v2-xxlarge-mnli   \\
--task_name $TASK_NAME   --do_train   --do_eval   --max_seq_length 256   --per_device_train_batch_size 4   \\
--learning_rate 3e-6   --num_train_epochs 3   --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16

Citation

If you find DeBERTa useful for your work, please cite the following paper:

@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}
Downloads last month
1,889
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using microsoft/deberta-v2-xxlarge-mnli 4