|
--- |
|
language: en |
|
license: cc-by-nc-sa-4.0 |
|
|
|
--- |
|
|
|
# LayoutLMv2 |
|
**Multimodal (text + layout/format + image) pre-training for document AI** |
|
|
|
The documentation of this model in the Transformers library can be found [here](https://huggingface.co/docs/transformers/model_doc/layoutlmv2). |
|
|
|
[Microsoft Document AI](https://www.microsoft.com/en-us/research/project/document-ai/) | [GitHub](https://github.com/microsoft/unilm/tree/master/layoutlmv2) |
|
## Introduction |
|
LayoutLMv2 is an improved version of LayoutLM with new pre-training tasks to model the interaction among text, layout, and image in a single multi-modal framework. It outperforms strong baselines and achieves new state-of-the-art results on a wide variety of downstream visually-rich document understanding tasks, including , including FUNSD (0.7895 β 0.8420), CORD (0.9493 β 0.9601), SROIE (0.9524 β 0.9781), Kleister-NDA (0.834 β 0.852), RVL-CDIP (0.9443 β 0.9564), and DocVQA (0.7295 β 0.8672). |
|
|
|
[LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding](https://arxiv.org/abs/2012.14740) |
|
Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou, ACL 2021 |
|
|