|
---
|
|
license: apache-2.0
|
|
library_name: peft
|
|
tags:
|
|
- generated_from_trainer
|
|
base_model: Helsinki-NLP/opus-mt-en-ar
|
|
metrics:
|
|
- bleu
|
|
model-index:
|
|
- name: finetuned_helsinki_peft_model__en_to_ar
|
|
results: []
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# finetuned_helsinki_peft_model__en_to_ar |
|
|
|
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-ar](https://huggingface.co/Helsinki-NLP/opus-mt-en-ar) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.7775 |
|
- Bleu: 27.1364 |
|
- Gen Len: 13.5265 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:| |
|
| 3.0607 | 0.2 | 500 | 1.8457 | 26.8804 | 13.4975 | |
|
| 2.7235 | 0.4 | 1000 | 1.8179 | 26.9476 | 13.5825 | |
|
| 2.7011 | 0.6 | 1500 | 1.8063 | 26.8946 | 13.632 | |
|
| 2.641 | 0.8 | 2000 | 1.7996 | 27.0619 | 13.613 | |
|
| 2.7115 | 1.0 | 2500 | 1.7959 | 26.9972 | 13.616 | |
|
| 2.694 | 1.2 | 3000 | 1.7931 | 27.0648 | 13.587 | |
|
| 2.6653 | 1.4 | 3500 | 1.7906 | 27.058 | 13.5555 | |
|
| 2.6602 | 1.6 | 4000 | 1.7882 | 26.9729 | 13.5755 | |
|
| 2.6234 | 1.8 | 4500 | 1.7838 | 27.0022 | 13.566 | |
|
| 2.5851 | 2.0 | 5000 | 1.7827 | 26.9623 | 13.561 | |
|
| 2.5532 | 2.2 | 5500 | 1.7811 | 27.1004 | 13.5305 | |
|
| 2.6314 | 2.4 | 6000 | 1.7800 | 26.9216 | 13.4905 | |
|
| 2.6261 | 2.6 | 6500 | 1.7792 | 26.9747 | 13.52 | |
|
| 2.6228 | 2.8 | 7000 | 1.7787 | 26.9506 | 13.529 | |
|
| 2.7118 | 3.0 | 7500 | 1.7781 | 26.9363 | 13.5615 | |
|
| 2.6205 | 3.2 | 8000 | 1.7777 | 27.0652 | 13.555 | |
|
| 2.5799 | 3.4 | 8500 | 1.7775 | 27.0987 | 13.5325 | |
|
| 2.6044 | 3.6 | 9000 | 1.7776 | 27.1322 | 13.5225 | |
|
| 2.6391 | 3.8 | 9500 | 1.7775 | 27.1541 | 13.5285 | |
|
| 2.6589 | 4.0 | 10000 | 1.7775 | 27.1364 | 13.5265 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.1.dev0 |
|
- Transformers 4.40.2 |
|
- Pytorch 2.3.0+cu118 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |