Gemma2B-LORAfied
This model is a fine-tuned version of google/gemma-2b on the databricks/databricks-dolly-15k dataset. It achieves the following results on the evaluation set:
- Loss: 2.0206
Training Hardware
This model was trained using:
- GPU: Intel(R) Data Center GPU Max 1100
- CPU: Intel(R) Xeon(R) Platinum 8480+
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 1480
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.927 | 1.64 | 100 | 2.5783 |
2.4568 | 3.28 | 200 | 2.2983 |
2.2609 | 4.92 | 300 | 2.1769 |
2.1671 | 6.56 | 400 | 2.1051 |
2.1065 | 8.2 | 500 | 2.0739 |
2.0844 | 9.84 | 600 | 2.0567 |
2.0643 | 11.48 | 700 | 2.0455 |
2.0511 | 13.11 | 800 | 2.0374 |
2.0435 | 14.75 | 900 | 2.0318 |
2.0304 | 16.39 | 1000 | 2.0276 |
2.0245 | 18.03 | 1100 | 2.0248 |
2.0247 | 19.67 | 1200 | 2.0228 |
2.0096 | 21.31 | 1300 | 2.0212 |
2.0183 | 22.95 | 1400 | 2.0206 |
Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.0.1a0+cxx11.abi
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 17
Model tree for migaraa/Gemma2B-LORAfied
Base model
google/gemma-2b