pasha / README.md
mijungkim's picture
update model card README.md
dea15cd
|
raw
history blame
2.89 kB
metadata
license: cc-by-nc-sa-4.0
tags:
  - generated_from_trainer
datasets:
  - nielsr/funsd-layoutlmv3
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: pasha
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: nielsr/funsd-layoutlmv3
          type: nielsr/funsd-layoutlmv3
          config: pasha
          split: test
          args: pasha
        metrics:
          - name: Precision
            type: precision
            value: 0.9845822875582646
          - name: Recall
            type: recall
            value: 0.989193083573487
          - name: F1
            type: f1
            value: 0.9868823000898472
          - name: Accuracy
            type: accuracy
            value: 0.9908389585342333

pasha

This model is a fine-tuned version of microsoft/layoutlmv3-base on the nielsr/funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0558
  • Precision: 0.9846
  • Recall: 0.9892
  • F1: 0.9869
  • Accuracy: 0.9908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.13 100 0.2662 0.9524 0.9442 0.9483 0.9566
No log 4.26 200 0.1026 0.9771 0.9820 0.9795 0.9851
No log 6.38 300 0.0722 0.9821 0.9878 0.9849 0.9884
No log 8.51 400 0.0608 0.9852 0.9863 0.9858 0.9892
0.2962 10.64 500 0.0606 0.9849 0.9860 0.9854 0.9889
0.2962 12.77 600 0.0518 0.9860 0.9910 0.9885 0.9920
0.2962 14.89 700 0.0526 0.9864 0.9910 0.9887 0.9923
0.2962 17.02 800 0.0543 0.9849 0.9896 0.9872 0.9913
0.2962 19.15 900 0.0557 0.9846 0.9888 0.9867 0.9911
0.0255 21.28 1000 0.0558 0.9846 0.9892 0.9869 0.9908

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.12.1
  • Datasets 2.6.1
  • Tokenizers 0.13.2