|
--- |
|
license: cc-by-nc-sa-4.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- nielsr/funsd-layoutlmv3 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: pasha |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: nielsr/funsd-layoutlmv3 |
|
type: nielsr/funsd-layoutlmv3 |
|
config: pasha |
|
split: test |
|
args: pasha |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.986704994610133 |
|
- name: Recall |
|
type: recall |
|
value: 0.989193083573487 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9879474725670084 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9905978784956606 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# pasha |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0585 |
|
- Precision: 0.9867 |
|
- Recall: 0.9892 |
|
- F1: 0.9879 |
|
- Accuracy: 0.9906 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 2.13 | 100 | 0.2664 | 0.9534 | 0.9438 | 0.9486 | 0.9571 | |
|
| No log | 4.26 | 200 | 0.1044 | 0.9756 | 0.9802 | 0.9779 | 0.9838 | |
|
| No log | 6.38 | 300 | 0.0672 | 0.9853 | 0.9899 | 0.9876 | 0.9904 | |
|
| No log | 8.51 | 400 | 0.0634 | 0.9824 | 0.9860 | 0.9842 | 0.9884 | |
|
| 0.2958 | 10.64 | 500 | 0.0585 | 0.9867 | 0.9892 | 0.9879 | 0.9906 | |
|
| 0.2958 | 12.77 | 600 | 0.0511 | 0.9889 | 0.9928 | 0.9908 | 0.9928 | |
|
| 0.2958 | 14.89 | 700 | 0.0503 | 0.9871 | 0.9921 | 0.9896 | 0.9925 | |
|
| 0.2958 | 17.02 | 800 | 0.0529 | 0.9860 | 0.9903 | 0.9881 | 0.9913 | |
|
| 0.2958 | 19.15 | 900 | 0.0581 | 0.9842 | 0.9892 | 0.9867 | 0.9904 | |
|
| 0.0256 | 21.28 | 1000 | 0.0571 | 0.9849 | 0.9888 | 0.9869 | 0.9901 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.13.2 |
|
|