bert_ru / README.md
mikhmanoff's picture
Update README.md
f17d028 verified
|
raw
history blame
852 Bytes
metadata
license: mit
language:
  - ru
metrics:
  - f1
  - roc_auc
  - precision
  - recall
pipeline_tag: text-classification
tags:
  - sentiment-analysis
  - multi-class-classification
  - sentiment analysis
  - rubert
  - sentiment
  - bert
  - tiny
  - russian
  - multiclass
  - classification
datasets:
  - sismetanin/rureviews
  - RuSentiment
  - LinisCrowd2015
  - LinisCrowd2016
  - KaggleRussianNews

The task is a multi-class classification with the following labels:

0: neutral
1: positive
2: negative

Label to Russian label:

neutral: нейтральный
positive: позитивный
negative: негативный

Usage

from transformers import pipeline
model = pipeline(model="seara/rubert-tiny2-russian-sentiment")
model("Привет, ты мне нравишься!")
# [{'label': 'positive', 'score': 0.9398769736289978}]