mikr's picture
Librarian Bot: Add base_model information to model (#2)
9e2b2a8
|
raw
history blame
2.21 kB
metadata
language:
  - cs
license: apache-2.0
tags:
  - whisper-event
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-large
model-index:
  - name: Whisper Large Czech CV11
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: cs
          split: test
        metrics:
          - type: wer
            value: 10.82782615098577
            name: Wer

Whisper Large Czech CV11

This model is a fine-tuned version of openai/whisper-large on the mozilla-foundation/common_voice_11_0 cs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2528
  • Wer: 10.8278

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0058 4.02 1000 0.2097 11.9563
0.0012 8.04 2000 0.2210 10.9751
0.001 13.01 3000 0.2405 11.3488
0.0002 17.02 4000 0.2467 10.8794
0.0001 21.04 5000 0.2528 10.8278

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2