mikr's picture
update model card README.md
04f7477
|
raw
history blame
2.18 kB
metadata
language:
  - cs
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Large-v2 Czech CV11
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 cs
          type: mozilla-foundation/common_voice_11_0
          config: cs
          split: test
          args: cs
        metrics:
          - name: Wer
            type: wer
            value: 9.032982817995986

Whisper Large-v2 Czech CV11

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 cs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2062
  • Wer: 9.0330

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0149 4.25 1000 0.1622 10.0403
0.0027 8.51 2000 0.1848 9.5136
0.0008 12.76 3000 0.1930 9.3166
0.0004 17.02 4000 0.2062 9.0330
0.0003 21.28 5000 0.2131 9.0440

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2