metadata
language:
- sl
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Medium Slovenian CV11
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 sl
type: mozilla-foundation/common_voice_11_0
config: sl
split: test
args: sl
metrics:
- name: Wer
type: wer
value: 17.93002915451895
Whisper Medium Slovenian CV11
This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 sl dataset. It achieves the following results on the evaluation set:
- Loss: 0.4331
- Wer: 17.9300
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.003 | 26.32 | 1000 | 0.3665 | 19.0379 |
0.0001 | 52.63 | 2000 | 0.4114 | 18.1778 |
0.0001 | 78.95 | 3000 | 0.4331 | 17.9300 |
0.0 | 105.26 | 4000 | 0.4458 | 18.0321 |
0.0 | 131.58 | 5000 | 0.4512 | 17.9883 |
Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2