mikr's picture
Librarian Bot: Add base_model information to model (#1)
0aac667
metadata
language:
  - sl
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: Whisper Medium Slovenian CV11
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 sl
          type: mozilla-foundation/common_voice_11_0
          config: sl
          split: test
          args: sl
        metrics:
          - type: wer
            value: 17.93002915451895
            name: Wer

Whisper Medium Slovenian CV11

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0 sl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4331
  • Wer: 17.9300

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.003 26.32 1000 0.3665 19.0379
0.0001 52.63 2000 0.4114 18.1778
0.0001 78.95 3000 0.4331 17.9300
0.0 105.26 4000 0.4458 18.0321
0.0 131.58 5000 0.4512 17.9883

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2