master_cate_ac16 / README.md
mini1013's picture
Push model using huggingface_hub.
2a9b113 verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: 얌뚱이 칼라고무밴드 머리끈 헤어밴드 고무줄 유아 아동 여아 어린이집 검정  대용량 대핑크30g 얌뚱이
  - text: 파티 벨벳 심플 왕리본핀 반묶음핀 30칼라 와인_납작핀대 릴리트리
  - text: 넓은 여자 머리띠 윤아 와이드 귀안아픈  니트 터번 T-도톰쫀득_핑크 모스블랑
  - text: 얼굴소멸 히메컷 가발 앞머리 사이드뱅 옆머리 부분 가발 애교머리 풀뱅 규리 민니 옆2p-라이트브라운 굿모닝리테일
  - text: 13cm 빅사이즈 대왕 숱많은  머리 꼬임 올림머리 집게핀 3/ 그라데이션 매트_브라운 블렌디드
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.9541466176054345
            name: Metric

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2.0
  • '(신세계김해점)에트로 프로푸미 헤어밴드 01046 05 1099 ONE SIZE 신세계백화점'
  • 'Baby scrunchie 3set (White/Beige/Black) 빌라드실크 곱창밴드 미니 실크 스크런치 세트 주식회사 실크랩'
  • '간단 헤어밴드 미키마우스 머리띠 왕 리본 남자 캐릭터 플라스틱 반짝이 1-4. 글리터 / 블랙 아이드림'
1.0
  • '위즈템 헤어밴드 진주 크리스탈 머리끈 연핑크 파파닐'
  • '둥근고무줄 (대용량) 칼라 금 은 천고무줄 벌크 탄성끈 가는줄 /굵은줄 02. 대용량 굵은줄(2.5mmx60M)_금색 마이1004(MY1004)'
  • '천연 컬러 고무 끈 고무줄 생활용품 3M 하늘색 제이앤제이웍스'
0.0
  • '인모 남자가발 정수리 커버 자연스러운 O형 커버가발 마오_인모14X14 하이윤'
  • '얼굴소멸 히메컷 가발 앞머리 사이드뱅 옆머리 부분 히메컷 사이드뱅 옆2p-내츄럴브라운 와우마켓'
  • '얼굴소멸 히메컷 가발 앞머리 사이드뱅 옆머리 부분 옆2p-라이트브라운 이지구'
4.0
  • '무지 12컬러 심플 리본 바나나핀 핫핑크 하얀당나귀'
  • '네임핀/이름핀/네임브로치/어린이집선물/유치원선물 5글자(영어6자~8자)_별_브로치 쭈스타'
  • '메탈 셀룰로오스 꼬임 올림머리 집게핀 사각4170_아이스옐로우 엑스엔서'
3.0
  • '웨딩 드레스 유니크 베일 셀프 촬영 소품 대형 리본 잡지 모델 패션쇼 장식 액세서리 머리 04.파란 (핸드메이드) 더비공이(TheB02)'
  • '슈퍼 요정 흰색 보석 웨딩 헤어 타워 공연 여행 T15-a_선택하세요 아토버디'
  • '뿌리볼륨집게3p 건강드림'

Evaluation

Metrics

Label Metric
all 0.9541

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac16")
# Run inference
preds = model("파티 벨벳 심플 왕리본핀 반묶음핀 30칼라 와인_납작핀대 릴리트리")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.956 24
Label Training Sample Count
0.0 50
1.0 50
2.0 50
3.0 50
4.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.025 1 0.4499 -
1.25 50 0.2065 -
2.5 100 0.0446 -
3.75 150 0.0001 -
5.0 200 0.0 -
6.25 250 0.0001 -
7.5 300 0.0 -
8.75 350 0.0 -
10.0 400 0.0 -
11.25 450 0.0 -
12.5 500 0.0 -
13.75 550 0.0 -
15.0 600 0.0 -
16.25 650 0.0 -
17.5 700 0.0 -
18.75 750 0.0 -
20.0 800 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}