master_cate_el2 / README.md
mini1013's picture
Push model using huggingface_hub.
7641fe3 verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: IPTIME UC 305HDMI C타입 USB 멀티포트 노트북 확장 PD  (주)스마트포유
  - text: 로지텍 파워플레이 Logitech Powerplay 시스템 충전패드 병행수입 Power Play 주식회사 데나
  - text: PBT키캡 푸딩 이중사출 영문 정각 108 풀배열 키보드 화이트  몬스타 주식회사
  - text: 펠로우즈 i-spire rocking 미니손목받침대 그레이 93933 그레이 아이룸코리아
  - text: AMH 클리어 투웨이 4포트 USB3.0 허브 민트  주식회사보성닷컴
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.9550144449030128
            name: Metric

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
2
  • '몬스타기어 달토끼 PBT 체리 프로파일 키캡 주식회사 노벨뷰사이언스'
  • '[COX] 영문 키캡, CX158 158키 이색사출 PBT 키캡, OSA 프로파일 [오셀라리스] (주)컴퓨존'
  • '벤큐 조위 CAMADE2 e-Sports 게이밍 마우스 번지대/마우스번지/카마데2 하이스트네트웍스 주식회사'
5
  • '지클릭커 클라우드 코튼 팜레스트 키보드 쿠션 손목 받침대 눈설탕 눈설탕 (주)수빈인포텍'
  • 'ABKO ARC1 TKL 아크릴 팜레스트 키보드 손목 받침대 텐키리스용 아이스 아크릴 조은 정보'
  • '펠로우즈 크리스탈젤 미니손목받침대 CRC91477 / 보라 에이티쓰리'
8
  • '로지텍 K380 키스킨 주식회사 제이앤디코퍼레이션'
  • '로지텍 K260 K270 K275 K295 MK275 MK295 키스킨 키보드커버 덮개 로지텍 K295 키스킨 현민트레이딩 주식회사'
  • '로지텍 K270 MK270R MK260R 키보드보호 키스킨 유비스마트'
4
  • '지클릭커 모니터 필름 PET 부착식 정보 보안 노트북 화면 보호기 블루라이트 차단 12.5인치 현시스템'
  • '앱코 블루라이트 차단 양면 부착형 모니터 정보보안필름 와이드(16:9) IP-24W 주식회사 케이에스샵'
  • '펠로우즈 프라이버시 정보보안 필터 14.1인치 와이드 16:10 정보보호 필름 48006 와이티코리아 주식회사'
3
  • '앱코 Pastel Desk Long Pad 마우스패드 파스텔 베이지 주식회사 승호'
  • '스틸시리즈 Qck Edge XL 게이밍 마우스패드 주식회사 엠앤웍스'
  • '파스텔 방수 가죽 마우스 장패드 네이비 본조르노온라인 주식회사'
7
  • '동성 만능크리너 60매 본품 (주)바오밥컴퍼니'
  • '동성크리너 동성 만능크리너 150매 (원통형) 주식회사 해인디지탈'
  • '일신 ECC-90 전기접점부활제 250g 리모콘 플스 닌텐도 스위치 조이콘 조이스틱 쏠림 접점세척제 벡스 BW-100 전기접점부활제 225g 모멘트리 (MOMENTREE)'
6
  • '전오 케이블타이 450mm 대용량 흰색 J-450 100개 국산 손소프트'
  • '베이스어스 마그네틱 케이블클립,선정리,케이블홀더 블랙(ACWDJ-01) 주식회사엠피맨코리아'
  • '전오 케이블타이 140MM 국산제품 전선정리 포장끈 작업현장 건설 농장 전자 공장 백색(1000개) 보람 LED'
1
  • 'ipTIME UH505 (기본구성) USB3.0 5포트 USB허브 5V3A 어댑터 (주)즐찾'
  • 'EFM네트웍스 아이피타임 UH505 다사다 유한책임회사'
  • '벨킨 11in1 USB C타입 멀티 허브 독 100W 충전 HDMI VGA 이더넷 노트북 거치대형 INC004bt 아이폰15 갤럭시 S24 그램 맥북 노트북 호환 실버그레이(INC004btSGY) (주) 디지월드'
0
  • 'Coms DJ729 데스크탑 PC 이동형 스탠드 컴퓨터 본체 거치대 바퀴 이동식 블랙 루미너스'
  • '컴퓨터 본체 받침대 DJ729 주식회사보성닷컴'
  • '데스크탑 PC 본체 이동형 스탠드 DJ729 주식회사 지디스엠알오'

Evaluation

Metrics

Label Metric
all 0.9550

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el2")
# Run inference
preds = model("AMH 클리어 투웨이 4포트 USB3.0 허브 민트  주식회사보성닷컴")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 10.1397 25
Label Training Sample Count
0 8
1 50
2 50
3 50
4 50
5 50
6 50
7 50
8 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0156 1 0.4963 -
0.7812 50 0.1854 -
1.5625 100 0.046 -
2.3438 150 0.0048 -
3.125 200 0.0168 -
3.9062 250 0.0002 -
4.6875 300 0.0001 -
5.4688 350 0.0001 -
6.25 400 0.0001 -
7.0312 450 0.0001 -
7.8125 500 0.0001 -
8.5938 550 0.0001 -
9.375 600 0.0001 -
10.1562 650 0.0001 -
10.9375 700 0.0 -
11.7188 750 0.0001 -
12.5 800 0.0 -
13.2812 850 0.0 -
14.0625 900 0.0 -
14.8438 950 0.0 -
15.625 1000 0.0 -
16.4062 1050 0.0001 -
17.1875 1100 0.0 -
17.9688 1150 0.0 -
18.75 1200 0.0 -
19.5312 1250 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}