master_cate_lh12 / README.md
mini1013's picture
Push model using huggingface_hub.
06dbeda verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: 이글루캠 S3플러스 2K 300만화소 가정용 CCTV  카메라 홈캠  (주) 트루엔
  - text: 멕시코 조트비누 400g 만능세제 세탁 세제 빨래 기름때 얼룩제거 욕실청소 라코로나 조트비누 400g (블루) 리아앤리브
  - text: 피플연구소 양면방수 매트 돗자리 145x150cm 로지브라운 피크닉 감성 화이트_M 스트림프러덕
  - text: 다우니 울트라 에이프릴 프레시 5.03L [생활] 섬유유연제_피죤 핑크로즈 3.1L x 4 옐로우로켓
  - text: >-
      창문 자동 롤방충망 상하식 미세 대형 셀프교체 사면 가로300x세로250mm
      사면_가로1600mm(1501~1600)_세로600mm(501~600) NK테크
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.7296620438939007
            name: Metric

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
9.0
  • '선반형 스텐 점보롤 디스펜서 폰 거치 케이스 유광실버 04_CNDH-03 스텐점보 유광 골드선반 (주)엘에스트레이드'
  • '하이브리드 쓰리킹 미트페이퍼 해동지 2롤 선택04.크록스 위생멸균 흡수지 2롤 찐텐마켓'
  • '크리넥스 클린케어 아쿠아 메가롤 3겹 50m 30롤 클린소프트 3겹 데코 30m 30롤 메리앤'
2.0
  • '애경 로얄 프로폴리스 에디션 선물세트 추석 선물세트 명절선물세트 샴푸 린스 강성수'
  • '로얄 프로폴리스 셀렉션 29호 X 1개 고기능 에디션으로 행복 선물 MinSellAmount 현둘마마'
  • '대림바스 카카오 라이언 선물세트 GIFT BOX (샤워기+샤워줄+필터4P+염소제거볼1P) 카카오 선물세트 GIFT BOX [라이언] 바스템'
0.0
  • '초소형 카메라 CCTV 무선 미니 감시 초소형 카메라 + 128GB SD카드_(리뷰약속)SD카드 32GB+방수케이스+거치대2종 일레닉'
  • '지르콘 멀티 탐지기 HD70 멀티탐색기 ZIRCON 멀티탐지 프랑스달'
  • '메모리선택 티피링크 Tapo TC70 200만화소 360도회전 실내무선카메라 홈CCTV 야간흑백전환 선택4 Tapo TC70+메모리카드128G 삼성디앤씨주식회사'
4.0
  • '바운스 건조기 드라이시트 아웃도어후레쉬 160매 1개 에너저틱'
  • '피죤 핑크로즈 3.1L 피죤 비앙카 3100ml 1입 주식회사 드림쇼핑'
  • '다우니 엑스퍼트 실내건조 섬유유연제 1L 생화향기 코튼퓨어 용기 1L (주)모던컴퍼니'
8.0
  • '엔젤가드 특허 90도 회전 전기모기채 충전식전자파리채 건전지대 01. 특허받은 led회전모기채(충전식 대) 핑크 WOOD파크'
  • 'ODF169432해피홈 에어넷 걸이형 제이엘 코리아(JL KOREA)'
  • '초강력해충킬러전기모기채(특대) 비트테크노'
6.0
  • '헨켈 퍼실 파워젤 라벤더 드럼용 리필 1.8L 퍼실 파워젤 드럼용 1.8L(일반/드럼 겸용) 누리플러스'
  • '다우니 프리미엄 엑스퍼트 실내건조 세탁세제 액체형 1.9L 08_다우니 코튼 퓨어러브 1L (주)넥스트월드코퍼레이션'
  • '애경산업 스파크 찬물에 잘녹는 세탁세제 리필 9.5kg 1개 쇼킹(SHOW KING)'
3.0
  • '쇼핑카트 바퀴달린장바구니 시장바구니캐리어 접이식 손수레 핸드 카트 마트 베이지체크패턴 (타입07) 소형 패턴 8종_체크 곤색 에이오더스(A Orders)'
  • '스테인레스 가정용 소형 원형 스퀘어 스탠드 방지 재 01.락 구형 블랙 라지 에이미어블'
  • '1초완성 원터치모기장 텐트 침대 사각 아기 대형 창문 2_베이직 블루 2~3인용(200X150) 다샵몰'
5.0
  • '금비 겉기저귀 프리미엄 와이드매직 실속형 대형 10p+10p(총 2팩) 팬티기저귀 대형 10p+10p 나루(NARU)리테일'
  • '디펜드 스타일 언더웨어 슬림 라이트핏 중형 여성용 10개입x8팩/요실금팬티 성인기저귀 송광물류'
  • '유한킴벌리 디펜드 안심플러스 중형 9매 -1개 주식회사 민영'
7.0
  • '말표 신발 탈취제 100ml 발냄새 신발냄새 제거 MinSellAmount 대코아'
  • '슈즈쿨 빨강색 신발건조탈취제 냄새 습기제거 MinSellAmount SMH만물상회'
  • '페브리즈 포맨 쿨아쿠아향 리필 320ml 포맨 쿨아쿠아향 리필 320ml 지기샵'
1.0
  • '좋은느낌 입는 오버나이트 중형 8매 x 1팩 주식회사 다올연구소'
  • '닉스컵 내몸을 생각하는 안전한 실리콘 생리컵 소형 luckytiger3'
  • '화이트 수퍼흡수 중형 (30+6)개입 (주) 삼성 에이치엔씨'

Evaluation

Metrics

Label Metric
all 0.7297

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh12")
# Run inference
preds = model("이글루캠 S3플러스 2K 300만화소 가정용 CCTV 홈 카메라 홈캠  (주) 트루엔")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.964 24
Label Training Sample Count
0.0 50
1.0 50
2.0 50
3.0 50
4.0 50
5.0 50
6.0 50
7.0 50
8.0 50
9.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0127 1 0.3941 -
0.6329 50 0.3041 -
1.2658 100 0.1323 -
1.8987 150 0.0705 -
2.5316 200 0.0185 -
3.1646 250 0.021 -
3.7975 300 0.0292 -
4.4304 350 0.0158 -
5.0633 400 0.0176 -
5.6962 450 0.0001 -
6.3291 500 0.0079 -
6.9620 550 0.0004 -
7.5949 600 0.0001 -
8.2278 650 0.0001 -
8.8608 700 0.0001 -
9.4937 750 0.0001 -
10.1266 800 0.0001 -
10.7595 850 0.0001 -
11.3924 900 0.0001 -
12.0253 950 0.0001 -
12.6582 1000 0.0 -
13.2911 1050 0.0 -
13.9241 1100 0.0001 -
14.5570 1150 0.0 -
15.1899 1200 0.0 -
15.8228 1250 0.0 -
16.4557 1300 0.0001 -
17.0886 1350 0.0 -
17.7215 1400 0.0 -
18.3544 1450 0.0 -
18.9873 1500 0.0 -
19.6203 1550 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}